搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高背压超声气体团簇喷流中团簇平均尺寸沿喷流方向演化研究

徐逸 A. S. Boldarev Dong Eon Kim 陈光龙

引用本文:
Citation:

高背压超声气体团簇喷流中团簇平均尺寸沿喷流方向演化研究

徐逸, A. S. Boldarev, Dong Eon Kim, 陈光龙

Evolution of average cluster size in supsonic cluster jet under high gas backing pressure

Xu Yi, A. S. Boldarev, Dong Eon Kim, Chen Guang-Long
PDF
导出引用
  • 本文通过对高背压(50 bar, 1 bar = 1.0×105 Pa)氩气经长锥型喷嘴(长度L=30 mm)向真空绝热膨胀所形成的超声气体团簇喷流的数值模拟, 分析比较了由喷嘴喉口起沿喷流方向在喷流中心轴线上团簇平均尺寸的演化情况. 结果表明: 沿喷流方向团簇平均尺寸显示先增长后趋于饱和的变化趋势, 具有较大尺寸团簇的区域出现在距离喷嘴喉口大约20 mm. 据此本文再结合关于喷流中原子密度沿喷流方向变化的模拟结果开展了锥形喷嘴长度的优化研究. 针对由常见构型的锥形喷嘴(喉径~ 0.5 mm, 半张角~ 8.5°)在高背压下形成的团簇喷流, 20 mm左右的长度为锥形喷嘴的适宜长度.
    Evolution of the average cluster size at the center of a cluster jet from the nozzle throat along the gas flow is investigated using simulations. The simulation is performed for the cluster jet from the expansion of Ar gas into vacuum through a long conical nozzle (with the length L of 30 mm) under a high backing pressure (~ 5×106 Pa). Results indicate that the cluster size increases gradually until it is close to the maximum with the increase of the distance from the nozzle throat, and the part of the jet with large-size clusters is located at the distance greater than 20 mm from the nozzle throat. Based on the simulation results about the evolution of the cluster size and the atom density in a cluster jet, the optimization of a nozzle length has been discussed under a given condition. This work shows that a proper nozzle length is about 20 mm for a usual conical nozzle with an opening angle of about 8.5 degree and a throat diameter of about 0.5 mm.
    • 基金项目: 上海市科学技术委员会(批准号: 11ZR1414500)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Shanghai, China (Grant No. 11ZR1414500).
    [1]

    McPherson A, Thompson B D, Borisov A B, Boyer K, Rhodes C K 1994 Nature 370 631

    [2]

    Shim B, Hays G, Zgadzaj R, Ditmire T, Downer M C 2007 Phys. Rev. Lett. 98 123902

    [3]

    Kumarappan V, Kim K Y, Milchberg H M 2005 Phys. Rev. Lett. 94 205004

    [4]

    Zweiback J, Cowan T E, Hartley J H, Howell R, Wharton K B, Crane J K, Yanovsky V P, Hays G, Smith R A, Ditmire T 2002 Phys. Plasmas 9 3108

    [5]

    Ditmire T, Zweiback J, Yanovsky V P, Cowan T E, Hays G, Wharton K B 1999 Nature 398 489.

    [6]

    Liu J S, Lu H Y, Zhou Z L, Wang C, Li H Y, Xia C Q, Wang W T, Xu Y, Lu X M, Leng Y X, Liang X Y, Ni G Q, Li R X, Xu Z Z 2014 Chin. J. Phys. 52 524

    [7]

    Smith R A, Ditmire T, Tisch J W G 1998 Rev. Sci. Instrum. 69 3798

    [8]

    Hagena O F 1992 Rev. Sci. Instrum. 63 2374

    [9]

    Hagena O F 1981 Surf. Sci. 106 101

    [10]

    Lu H Y, Ni G Q, Li R X, Xu Z Z 2010 J. Chem. Phys. 132 124303

    [11]

    Dorchies F, Blasco F, Caillaud T, Stevefelt J, Stenz C, Boldarev A S, Gasilov, V A 2003 Phys. Rev. A 68 023201

    [12]

    Boldarev A S, Gasilov V A, Faenov A Y, Fukuda Y, Yamakawa K 2006 Rev. Sci. Instrum. 77 083112

    [13]

    Guo E F, Han J F, Li Y Q, Yang C W, Zhou R 2014 Acta Phys. Sin. 63 103601 (in Chinese) [郭尔夫, 韩纪锋, 李永青, 杨朝文, 周荣 2014 63 103601]

    [14]

    Chen G L, Kim B, Ahn B, Kim D E 2010 J. Appl. Phys. 108 064329

    [15]

    Chen G L, Xu H X, Ren L, Wang L L, Cao Y J, Zhang X L, Ping Y X, Kim D E 2013 Acta Phys. Sin. 62 133601 (in Chinese) [陈光龙, 徐红霞, 任莉, 汪丽莉, 曹云玖, 张修丽, 平云霞, Dong Eon Kim 2013 62 133601]

    [16]

    Jinno S, Fukuda Y, Sakaki H, Yogo A, Kanasaki M, Kondo K, Faenov A Ya, Skobelev I Yu, Pikuz T A, Boldarev A S, Gasilov V A 2013 Appl. Phys. Lett. 102 164103

    [17]

    Jinno S, Fukuda Y, Sakaki H, Yogo A, Kanasaki M, Kondo K, Faenov A Ya, Skobelev I Yu, Pikuz T A, Boldarev A S, Gasilov V A 2013 Opt Express 21 20656

    [18]

    Fukuda Y, Faenov A Ya, Tampo M, Pikuz T A, Nakamura T, Kando M, Hayashi Y, Yogo A, Sakaki H, Kameshima T, Pirozhkov A S, Ogura K, Mori M, Esirkepov T Zh, Koga J, Boldarev A S, Gasilov V A, Magunov A I, Yamauchi T, Kodama R, Bolton P R, Kato Y, Tajima T, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 165002

  • [1]

    McPherson A, Thompson B D, Borisov A B, Boyer K, Rhodes C K 1994 Nature 370 631

    [2]

    Shim B, Hays G, Zgadzaj R, Ditmire T, Downer M C 2007 Phys. Rev. Lett. 98 123902

    [3]

    Kumarappan V, Kim K Y, Milchberg H M 2005 Phys. Rev. Lett. 94 205004

    [4]

    Zweiback J, Cowan T E, Hartley J H, Howell R, Wharton K B, Crane J K, Yanovsky V P, Hays G, Smith R A, Ditmire T 2002 Phys. Plasmas 9 3108

    [5]

    Ditmire T, Zweiback J, Yanovsky V P, Cowan T E, Hays G, Wharton K B 1999 Nature 398 489.

    [6]

    Liu J S, Lu H Y, Zhou Z L, Wang C, Li H Y, Xia C Q, Wang W T, Xu Y, Lu X M, Leng Y X, Liang X Y, Ni G Q, Li R X, Xu Z Z 2014 Chin. J. Phys. 52 524

    [7]

    Smith R A, Ditmire T, Tisch J W G 1998 Rev. Sci. Instrum. 69 3798

    [8]

    Hagena O F 1992 Rev. Sci. Instrum. 63 2374

    [9]

    Hagena O F 1981 Surf. Sci. 106 101

    [10]

    Lu H Y, Ni G Q, Li R X, Xu Z Z 2010 J. Chem. Phys. 132 124303

    [11]

    Dorchies F, Blasco F, Caillaud T, Stevefelt J, Stenz C, Boldarev A S, Gasilov, V A 2003 Phys. Rev. A 68 023201

    [12]

    Boldarev A S, Gasilov V A, Faenov A Y, Fukuda Y, Yamakawa K 2006 Rev. Sci. Instrum. 77 083112

    [13]

    Guo E F, Han J F, Li Y Q, Yang C W, Zhou R 2014 Acta Phys. Sin. 63 103601 (in Chinese) [郭尔夫, 韩纪锋, 李永青, 杨朝文, 周荣 2014 63 103601]

    [14]

    Chen G L, Kim B, Ahn B, Kim D E 2010 J. Appl. Phys. 108 064329

    [15]

    Chen G L, Xu H X, Ren L, Wang L L, Cao Y J, Zhang X L, Ping Y X, Kim D E 2013 Acta Phys. Sin. 62 133601 (in Chinese) [陈光龙, 徐红霞, 任莉, 汪丽莉, 曹云玖, 张修丽, 平云霞, Dong Eon Kim 2013 62 133601]

    [16]

    Jinno S, Fukuda Y, Sakaki H, Yogo A, Kanasaki M, Kondo K, Faenov A Ya, Skobelev I Yu, Pikuz T A, Boldarev A S, Gasilov V A 2013 Appl. Phys. Lett. 102 164103

    [17]

    Jinno S, Fukuda Y, Sakaki H, Yogo A, Kanasaki M, Kondo K, Faenov A Ya, Skobelev I Yu, Pikuz T A, Boldarev A S, Gasilov V A 2013 Opt Express 21 20656

    [18]

    Fukuda Y, Faenov A Ya, Tampo M, Pikuz T A, Nakamura T, Kando M, Hayashi Y, Yogo A, Sakaki H, Kameshima T, Pirozhkov A S, Ogura K, Mori M, Esirkepov T Zh, Koga J, Boldarev A S, Gasilov V A, Magunov A I, Yamauchi T, Kodama R, Bolton P R, Kato Y, Tajima T, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 165002

  • [1] 张春艳. H离子团簇高次谐波平台展宽与团簇膨胀.  , 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [2] VasiliyPelenovich, 曾晓梅, 罗进宝, RakhimRakhimov, 左文彬, 张翔宇, 田灿鑫, 邹长伟, 付德君, 杨兵. 气体团簇离子束两步能量修形法的平坦化效应.  , 2021, 70(5): 053601. doi: 10.7498/aps.70.20201454
    [3] 罗进宝, VasiliyPelenovich, 曾晓梅, 郝中华, 张翔宇, 左文彬, 付德君. 离子剂量比在气体团簇多级能量平坦化模式中的作用.  , 2021, 70(22): 223601. doi: 10.7498/aps.70.20202011
    [4] 曾晓梅, VasiliyPelenovich, RakhimRakhimov, 左文彬, 邢斌, 罗进宝, 张翔宇, 付德君. 气体团簇离子束装置的设计及其在表面平坦化、自组装纳米结构中的应用.  , 2020, 69(9): 093601. doi: 10.7498/aps.69.20191990
    [5] 王同, 胡小刚, 吴爱民, 林国强, 于学文, 董闯. 以团簇加连接原子模型解析Cr-C共晶成分.  , 2017, 66(9): 092101. doi: 10.7498/aps.66.092101
    [6] 王花, 陈琼, 王文广, 厚美瑛. 颗粒气体团簇行为实验研究.  , 2016, 65(1): 014502. doi: 10.7498/aps.65.014502
    [7] 赵家瑞, 李毅飞, 马景龙, 王进光, 黄开, 韩玉晶, 马勇, 闫文超, 李大章, 袁大伟, 李玉同, 张杰, 陈黎明. 常温下氙气以及氢氙混合气体形成的团簇的特性研究.  , 2015, 64(4): 042101. doi: 10.7498/aps.64.042101
    [8] 郭尔夫, 韩纪锋, 李永青, 杨朝文, 周荣. 超声喷流氩氢混合团簇特性研究.  , 2014, 63(10): 103601. doi: 10.7498/aps.63.103601
    [9] 王龙, 郭尔夫, 韩纪锋, 刘建波, 李永青, 周荣, 杨朝文. 静态真空对超声喷流气体团簇制备的实验研究.  , 2014, 63(20): 203601. doi: 10.7498/aps.63.203601
    [10] 陈光龙, 徐红霞, 任莉, 汪丽莉, 曹云玖, 张修丽, 平云霞, Dong Eon Kim. Hagena团簇尺度定律中锥形喷嘴的等效孔径.  , 2013, 62(13): 133601. doi: 10.7498/aps.62.133601
    [11] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡.  , 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [12] 付鹏涛, 韩纪锋, 牟艳红, 韩丹, 杨朝文. 瑞利散射法研究超声喷流二氧化碳团簇尺度轴向分布.  , 2011, 60(5): 053602. doi: 10.7498/aps.60.053602
    [13] 郝传璞, 王清, 马仁涛, 王英敏, 羌建兵, 董闯. 体心立方固溶体合金中的团簇+连接原子结构模型.  , 2011, 60(11): 116101. doi: 10.7498/aps.60.116101
    [14] 郑晓军, 张俊, 黄忠兵. 扩展哈伯德模型中原子团簇的结构和热力学性质研究.  , 2010, 59(6): 3897-3904. doi: 10.7498/aps.59.3897
    [15] 张林, 徐送宁, 李蔚, 孙海霞, 张彩碚. 小尺寸铜团簇冷却与并合过程中结构变化的原子尺度研究.  , 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [16] 刘猛, 陆建峰, 韩纪峰, 李佳, 罗小兵, 缪竞威, 师勉恭, 杨朝文. 超声喷流Ar团簇生长演化过程及团簇尺寸轴向分布的实验研究.  , 2009, 58(10): 6951-6955. doi: 10.7498/aps.58.6951
    [17] 杨 明, 刘建胜, 蔡 懿, 王文涛, 王 成, 倪国权, 李儒新, 徐至展. 低密度大尺寸团簇形成的诊断研究.  , 2008, 57(1): 176-180. doi: 10.7498/aps.57.176
    [18] 毛华平, 杨兰蓉, 王红艳, 朱正和, 唐永建. 钇小团簇的结构和电离势的计算.  , 2005, 54(11): 5126-5129. doi: 10.7498/aps.54.5126
    [19] 李邵辉, 王 成, 刘建胜, 王向欣, 李儒新, 倪国权, 徐至展. 飞秒强激光场中大尺寸氩团簇爆炸机理的实验研究.  , 2005, 54(2): 636-641. doi: 10.7498/aps.54.636
    [20] 刘建胜, 李儒新, 朱频频, 徐至展, 刘晶儒. 大尺寸团簇在超短超强激光场中的动力学行为.  , 2001, 50(6): 1121-1127. doi: 10.7498/aps.50.1121
计量
  • 文章访问数:  5973
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-18
  • 修回日期:  2014-09-09
  • 刊出日期:  2015-01-05

/

返回文章
返回
Baidu
map