-
提出了基于微椭球型空气腔的在线型光纤复合法布里-珀罗干涉结构, 并对其折射率传感特性进行了研究. 椭球型空气微腔利用光纤熔接机对实芯光子晶体光纤和单模光纤以特定的熔接参数熔接形成. 用高斯光束模型和ABCD法则分析了椭球型空气腔的腔内损耗, 建立了电磁场在复合法布里-珀罗干涉结构中传播的物理模型. 根据腔长比值的不同, 环境折射率对干涉条纹的影响有对比度调制和波长调制, 本文主要研究了一种波长调制型复合法布里-珀罗结构折射率传感器. 仿真结果表明该折射率传感器在1–1.6范围内不出现折射率转折点; 实验结果表明在1.333–1.466范围内, 折射率灵敏度~ 37.088 nm·RIU-1, 分辨率约为2.69×10-5. 该光纤复合法布里-珀罗结构干涉条纹对比度高、体积小、成本低, 用于折射率测量可靠性高、分辨率高、无折射率拐点、温度串扰小.
-
关键词:
- 光纤传感 /
- 复合法布里-珀罗干涉 /
- 折射率测量 /
- 波长解调
A hybrid-Fabry-Perot (F-P) interferometer based on an in-fiber ellipsoidal cavity is presented, and the refractive index sensing properties are studied. The ellipsoidal air-microcavity is formed by splicing together a single-mode fiber and a photonic crystal fiber with special arc-discharge technique. The cavity loss is analyzed by using a Gaussian beam model and the ABCD law, and the physical model of electromagnetic transmission is established. According to the cavity length ratio, there are two kinds of the influences of environment refractive index on interference fringe: contrast modulation and wavelength modulation. A fiber refractive index sensor with an enclosed air cavity based on wavelength demodulation is proposed in this paper. The result of simulation shows that the sensors has no turning point in a range of 1-1.6. A wavelength interrogation technique is used to demodulate refractive-index with high sensitivity (~ 37.088 nm·RIU-1) and high resolution (~ 2.69× 10-5) and with low temperature crosstalk. Experimental results are in good agreement with the theoretical ones. The F-P fiber sensor also holds advantages such as compactness, low cost, easy fabrication, high contrast, high resolution, no turning point, and low temperature crosstalk.-
Keywords:
- fiber sensing /
- hybrid Fabry-Perot /
- refractive-index measurement /
- wavelength interrogation
[1] Zhao H J 2012 Chin. Phys. B 21 087104
[2] Sang X Z, Yu C X, Mayteevarunyoo T, Wang K, Zhang Q, Chu P L 2007 Sens. Actuat. B: Chemical 120 754
[3] Chen X F, Zhou K M, Zhang L, Bennion I 2007 Appl. Opt. 46 451
[4] Li H D, Fu H W, Shao M, Zhao N, Qiao X G, Liu Y G, Li Y, Yan X 2013 Acta Phys. Sin. 62 214209 (in Chinese) [李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭 2013 62 214209]
[5] Wei T, Han Y K, Li Y J, Tsai H L, Xiao H 2008 Opt. Express 16 5764
[6] Ran Z L, Rao Y J, Liu W J, Liao X, Chiang K S 2008 Opt. Express 16 2252
[7] Gong Y, Guo Y, Rao Y J, Zhao T, Wu Y, Ran Z L 2011 Acta Phys. Sin. 60 064202 (in Chinese) [龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令 2011 60 064202]
[8] Deng M, Rao Y J, Zhu T, Duan D W 2009 Acta Opt. Sin. 29 1790 (in Chinese) [邓明, 饶云江, 朱涛, 段德稳 2009 光学学报 29 1790]
[9] Wang T T, Wang M, Ni H B 2012 IEEE Photon. Technol. Lett. 24 948
[10] Wang T T, Wang M 2012 IEEE Photon. Technol. Lett. 24 1733
[11] Chu T S 1966 Bell Syst. Tech. J. 45 287
[12] Marcuse D 1977 Bell Syst. Tech. J. 56 703
-
[1] Zhao H J 2012 Chin. Phys. B 21 087104
[2] Sang X Z, Yu C X, Mayteevarunyoo T, Wang K, Zhang Q, Chu P L 2007 Sens. Actuat. B: Chemical 120 754
[3] Chen X F, Zhou K M, Zhang L, Bennion I 2007 Appl. Opt. 46 451
[4] Li H D, Fu H W, Shao M, Zhao N, Qiao X G, Liu Y G, Li Y, Yan X 2013 Acta Phys. Sin. 62 214209 (in Chinese) [李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭 2013 62 214209]
[5] Wei T, Han Y K, Li Y J, Tsai H L, Xiao H 2008 Opt. Express 16 5764
[6] Ran Z L, Rao Y J, Liu W J, Liao X, Chiang K S 2008 Opt. Express 16 2252
[7] Gong Y, Guo Y, Rao Y J, Zhao T, Wu Y, Ran Z L 2011 Acta Phys. Sin. 60 064202 (in Chinese) [龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令 2011 60 064202]
[8] Deng M, Rao Y J, Zhu T, Duan D W 2009 Acta Opt. Sin. 29 1790 (in Chinese) [邓明, 饶云江, 朱涛, 段德稳 2009 光学学报 29 1790]
[9] Wang T T, Wang M, Ni H B 2012 IEEE Photon. Technol. Lett. 24 948
[10] Wang T T, Wang M 2012 IEEE Photon. Technol. Lett. 24 1733
[11] Chu T S 1966 Bell Syst. Tech. J. 45 287
[12] Marcuse D 1977 Bell Syst. Tech. J. 56 703
计量
- 文章访问数: 6146
- PDF下载量: 442
- 被引次数: 0