-
提出了一基于Sierpinski分形结构的Si/Ge纳米复合材料结构, 以调控纳米复合材料的热导率. 采用非平衡分子动力学方法模拟研究了分形结构Si/Ge纳米复合材料的导热性能, 给出了硅原子百分比、轴向长度以及截面尺寸对分形结构纳米复合材料热导率的影响规律, 并与传统矩形结构进行了对比. 研究结果表明, 分形结构纳米复合材料增强了Si/Ge界面散射作用, 使得热导率低于传统矩形结构, 这为提高材料的热电效率提供了有效途径. Si原子百分比、截面尺寸、轴向长度皆对分形结构纳米复合材料热导率存在着重要影响. 纳米复合材料热导率随着Si原子百分比的增加呈先减小后增加的趋势, 随轴向长度的增加则呈单调增大趋势.Sierpinski carpet fractal structure is introduced into the construction of Si/Ge nanocomposites in this paper so as to regulate and control the thermal conductivity of the nanocomposites. Non-equilibrium molecular dynamics simulation is applied to investigate the thermal conduction performance of nanocomposites embedded with fractal structure. Effects of the silicon atom percent, axial length and cross-sectional dimensions on the thermal conductivity of nanocomposites embedded with fractal structure are analyzed and compared with the corresponding nanocomposites embedded with traditional rectangular structure. It is indicated that, owing to the enhanced scattering at the Si/Ge interfaces of nanocomposites embedded with fractal structure, their thermal conductivity are lower than that embedded with rectangular structure, thus providing an effective way to improve the thermoelectric efficiency. And it is also demonstrated that the thermal conductivity of nanocomposites embedded with fractal structure are affected by the silicon atoms percent, axial length and cross-sectional size. The thermal conductivity is first decreased and then increased with the increase of Si atom percent. In addition, the increase in axial length of nanocomposites may lead to the enhancement of thermal conduction.
-
Keywords:
- thermal conductivity /
- fractal /
- molecular dynamics /
- nanocomposites
[1] Yang R, Chen G 2004 Phys. Rev. B 69 195316
[2] Jeng M S, Yang R, Song D, Chen G 2008 J. Heat. Transfer 130 042410
[3] Ordonez M J, Yang R, Alvarado-Gil J J 2011 Appl. Phys. Lett. 98 233111
[4] Hui Z X, He P F, Dai Y, Wu A H 2014 Acta Phys. Sin. 63 074401 (in Chinese) [惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 63 074401]
[5] Yang R, Chen G, Dresselhaus M S 2005 Phys. Rev. B 72 125418
[6] Chen G 1998 Phys. Rev. B 57 14958
[7] Hu M, Giapis K P, Goicochea J V, Zhang X L, Poulikakos D 2011 Nano Lett. 11 618
[8] Yang P, Wu Y S, Xu H F, Xu X X, Zhang L Q, Li P 2011 Acta Phys. Sin. 60 066601 (in Chinese) [杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培 2011 60 066601]
[9] Liu J F, Zeng D L, Liu C, Li Q 2007 J. Eng. Thermophys. 28 196 (in Chinese) [刘娟芳, 曾丹苓, 刘朝, 李勤 2007 工程热 28 196]
[10] Cheaito R, Duda J C, Beechem T E, Hattar K, Ihlefeld J F, Medlin D L, Rodriguez M A, Campion M J, Piekos E S, Hopkins P E 2012 Phys. Rev. Lett. 109 195901
[11] Chen Y F, Li D Y, Lukes J R, Ni Z, Chen M 2005 Phys. Rev. B 72 174302
[12] Yang R, Chen G 2005 Nano Lett. 5 1111
[13] Li X B, Yang R 2013 J. Appl. Phys. 113 104306
[14] Bai S Y, Tang Z A, Huang Z X, Yu J, Wang J Q 2008 Chin. Phys. Lett. 25 593
[15] Wang H F, Chu W G, Guo Y J, Jin H 2010 Chin. Phys. B 19 076501
[16] Wu T Y, Lai W S, Fu B Q 2013 Chin. Phys. B 22 076601
[17] Yu B M, Li B W 2006 Phys. Rev. E 73 066302
[18] Tersoff J 1989 Phys. Rev. B 39 5566
[19] Oligschleger C, Schon J C 1999 Phys. Rev. B 59 4125
[20] Maiti A, Mahan G D 1997 Solid. State. Commun. 102 517
[21] Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306
[22] Chen G 2000 Int. J. Therm. Sci. 39 471
[23] Hu M, Zhang X L, Poulikakos D 2011 Phys. Rev. B 84 085442
[24] Yang Y, Lu Y F, Lu M C, Huang J M, Haddad R, Xomeritakis G, Liu N G, Malanoski A P, Sturmayr D, Fan H Y, Sasaki D Y, Assink R A, Shelnutt J A, van Swol F, Lopez G P, Burns A R, Brinker C J 2003 J. Am. Chem. Soc. 125 1269
[25] Zhou X S, Yin Y X, Wan L J, Guo Y G 2012 Adv. Energy Mater. 2 1086
[26] Zhao Y J, Zhao X W, Hu J, Xu M, Zhao W J, Sun L J, Zhu C, Xu H, Gu Z Z 2009 Adv. Mater. 21 569
-
[1] Yang R, Chen G 2004 Phys. Rev. B 69 195316
[2] Jeng M S, Yang R, Song D, Chen G 2008 J. Heat. Transfer 130 042410
[3] Ordonez M J, Yang R, Alvarado-Gil J J 2011 Appl. Phys. Lett. 98 233111
[4] Hui Z X, He P F, Dai Y, Wu A H 2014 Acta Phys. Sin. 63 074401 (in Chinese) [惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 63 074401]
[5] Yang R, Chen G, Dresselhaus M S 2005 Phys. Rev. B 72 125418
[6] Chen G 1998 Phys. Rev. B 57 14958
[7] Hu M, Giapis K P, Goicochea J V, Zhang X L, Poulikakos D 2011 Nano Lett. 11 618
[8] Yang P, Wu Y S, Xu H F, Xu X X, Zhang L Q, Li P 2011 Acta Phys. Sin. 60 066601 (in Chinese) [杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培 2011 60 066601]
[9] Liu J F, Zeng D L, Liu C, Li Q 2007 J. Eng. Thermophys. 28 196 (in Chinese) [刘娟芳, 曾丹苓, 刘朝, 李勤 2007 工程热 28 196]
[10] Cheaito R, Duda J C, Beechem T E, Hattar K, Ihlefeld J F, Medlin D L, Rodriguez M A, Campion M J, Piekos E S, Hopkins P E 2012 Phys. Rev. Lett. 109 195901
[11] Chen Y F, Li D Y, Lukes J R, Ni Z, Chen M 2005 Phys. Rev. B 72 174302
[12] Yang R, Chen G 2005 Nano Lett. 5 1111
[13] Li X B, Yang R 2013 J. Appl. Phys. 113 104306
[14] Bai S Y, Tang Z A, Huang Z X, Yu J, Wang J Q 2008 Chin. Phys. Lett. 25 593
[15] Wang H F, Chu W G, Guo Y J, Jin H 2010 Chin. Phys. B 19 076501
[16] Wu T Y, Lai W S, Fu B Q 2013 Chin. Phys. B 22 076601
[17] Yu B M, Li B W 2006 Phys. Rev. E 73 066302
[18] Tersoff J 1989 Phys. Rev. B 39 5566
[19] Oligschleger C, Schon J C 1999 Phys. Rev. B 59 4125
[20] Maiti A, Mahan G D 1997 Solid. State. Commun. 102 517
[21] Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306
[22] Chen G 2000 Int. J. Therm. Sci. 39 471
[23] Hu M, Zhang X L, Poulikakos D 2011 Phys. Rev. B 84 085442
[24] Yang Y, Lu Y F, Lu M C, Huang J M, Haddad R, Xomeritakis G, Liu N G, Malanoski A P, Sturmayr D, Fan H Y, Sasaki D Y, Assink R A, Shelnutt J A, van Swol F, Lopez G P, Burns A R, Brinker C J 2003 J. Am. Chem. Soc. 125 1269
[25] Zhou X S, Yin Y X, Wan L J, Guo Y G 2012 Adv. Energy Mater. 2 1086
[26] Zhao Y J, Zhao X W, Hu J, Xu M, Zhao W J, Sun L J, Zhu C, Xu H, Gu Z Z 2009 Adv. Mater. 21 569
计量
- 文章访问数: 6967
- PDF下载量: 578
- 被引次数: 0