搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电大开孔箱体屏蔽效能分析解析模型

张亚普 达新宇 祝杨坤 赵蒙

引用本文:
Citation:

电大开孔箱体屏蔽效能分析解析模型

张亚普, 达新宇, 祝杨坤, 赵蒙

Formulation for shielding effectiveness analysis of a rectangular enclosure with an electrically large aperture

Zhang Ya-Pu, Da Xin-Yu, Zhu Yang-Kun, Zhao Meng
PDF
导出引用
  • 电磁脉冲武器能够通过“前、后门”耦合效应对箱体内部电子元器件及电路板造成损伤, 从而对电气电子设备的安全性构成严重威胁, 因此, 开展箱体电磁屏蔽效能的分析研究具有重要意义. 推导了任意入射波条件下电大开孔箱体屏蔽系数的解析解, 并在此基础上对箱体屏蔽效能进行了分析研究. 首先通过矢量分解, 得出任意入射平面波的坐标分量; 再基于Cohn模型, 获得了电大开孔的等效电偶、磁偶极子; 然后通过镜像原理, 计算出总的赫兹电矢量位、磁矢量位; 最终求得电大开孔箱体内部任意观测点的电场解析解, 用于箱体屏蔽系数计算. 设计了5组验证性实验, 仿真结果表明: 该解析算法相对CST的均方误差为11.565 dB, 绝对误差为8.015 dB, 相关系数为0.921, 从而验证了该算法的准确性; 解析算法仿真的平均耗时为0.183 s, 仅占CST耗时的1/7530, 从而验证了该算法的高效性.
    Since electric components and printed circuit board in the enclosure can be destroyed by electromagnetic pulse weapons through “front door and back door” coupling, which is a great threat to the operational security, the study of the shielding effectiveness is of important significance. A formulation for shielding effectiveness analysis of a rectangular enclosure with an electrically large aperture is proposed in this paper. Firstly, the plane wave with oblique incidence and polarization is decomposed. Secondly, based on the Cohn model, the equivalent electric and magnetic dipole of the electrically large aperture is computed. Thirdly, the total Hertz electric and magnetic vector potential is obtained through mirror procedure. Finally, the electric field inside an enclosure with electrically large aperture is formulated, which is used for shielding effectiveness calculation. Five verification experiments are designed. Simulation result shows that the mean square error and absolute error of this method compared to computer simulation technology (CST) microwave studio are 11.565 dB and 8.015 dB respectively, the correlation coefficient is 0.921, through which the accuracy of this method is verified. The simulation time of this method is 0.183 s, which is only 1/7530 times of CST, so its efficiency is obvious.
    • 基金项目: 国家自然科学基金(批准号:61271100,61271250)、陕西省自然科学基础研究重点项目(批准号:2010JZ010)和通信网信息传输与分发技术重点实验室基金(批准号:ITD-U2003/K1260009)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271100, 61271250), the Major Program of Natural Science Basic Research of Shaanxi Province, China (Grant No. 2010JZ010), and the Foundation of Communication Network Information Transmission and Distribution Technology Laboratory, China (Grant No. ITD-U2003/K1260009).
    [1]

    Jiao C Q, Niu S 2013 Acta Phys. Sin. 62 114102 (in Chinese) [焦重庆, 牛帅 2013 62 114102]

    [2]

    Ji W J, Tong C M 2013 Chin. Phys. B 22 020301

    [3]

    Lu X C, Wang J G, Liu Y, Li S, Han F 2013 Acta Phys. Sin. 62 070504 (in Chinese) [陆希成, 王建国, 刘钰, 李爽, 韩峰 2013 62 070504]

    [4]

    Fan J Q, Hao J H, Qi P H 2014 Acta Phys. Sin. 63 014104 (in Chinese) [范杰清, 郝建红, 柒培华 2014 63 014104]

    [5]

    Jiao C Q, Zhu H Z 2013 Chin. Phys. B 22 084101

    [6]

    Wang T, Harrington R F, Mautz J R 1990 IEEE Trans. Antennas Propag. 38 1805

    [7]

    Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. B 18 2757

    [8]

    Render M C, Marvin A C 1995 IEEE Trans. Electromagn. Compat. 37 488

    [9]

    Robinson M P, Benson T M, Christopoulos C, Dawson J F, Ganley M D, Marvin A C, Porter S J, Thomas D W P 1998 IEEE Trans. Electromagn. Compat. 40 240

    [10]

    Konefal T, Dawson J F, Marvin A C, Robinson M P, Porter S J 2005 IEEE Trans. Electromagn. Compat. 47 678

    [11]

    Dehkhoda P, Tavakoli A, Moini R 2008 IEEE Trans. Electromagn. Compat. 50 208

    [12]

    Jongjoo S, Dong G K, Jong H K, Joungho K 2010 IEEE Trans. Electromagn. Compat. 52 566

    [13]

    Belkacem F T, Bensetti M, Boutar A G, Moussaoui D, Djennah M, Mazari B 2011 IET Sci. Meas. Technol. 5 88

    [14]

    Nitsch J B, Tkachenko S V, Potthast S 2012 IEEE Trans. Electromagn. Compat. 54 1252

    [15]

    Solin J R 2011 IEEE Trans. Electromagn. Compat. 53 82

    [16]

    Solin J R 2012 IEEE Trans. Electromagn. Compat. 54 188

  • [1]

    Jiao C Q, Niu S 2013 Acta Phys. Sin. 62 114102 (in Chinese) [焦重庆, 牛帅 2013 62 114102]

    [2]

    Ji W J, Tong C M 2013 Chin. Phys. B 22 020301

    [3]

    Lu X C, Wang J G, Liu Y, Li S, Han F 2013 Acta Phys. Sin. 62 070504 (in Chinese) [陆希成, 王建国, 刘钰, 李爽, 韩峰 2013 62 070504]

    [4]

    Fan J Q, Hao J H, Qi P H 2014 Acta Phys. Sin. 63 014104 (in Chinese) [范杰清, 郝建红, 柒培华 2014 63 014104]

    [5]

    Jiao C Q, Zhu H Z 2013 Chin. Phys. B 22 084101

    [6]

    Wang T, Harrington R F, Mautz J R 1990 IEEE Trans. Antennas Propag. 38 1805

    [7]

    Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. B 18 2757

    [8]

    Render M C, Marvin A C 1995 IEEE Trans. Electromagn. Compat. 37 488

    [9]

    Robinson M P, Benson T M, Christopoulos C, Dawson J F, Ganley M D, Marvin A C, Porter S J, Thomas D W P 1998 IEEE Trans. Electromagn. Compat. 40 240

    [10]

    Konefal T, Dawson J F, Marvin A C, Robinson M P, Porter S J 2005 IEEE Trans. Electromagn. Compat. 47 678

    [11]

    Dehkhoda P, Tavakoli A, Moini R 2008 IEEE Trans. Electromagn. Compat. 50 208

    [12]

    Jongjoo S, Dong G K, Jong H K, Joungho K 2010 IEEE Trans. Electromagn. Compat. 52 566

    [13]

    Belkacem F T, Bensetti M, Boutar A G, Moussaoui D, Djennah M, Mazari B 2011 IET Sci. Meas. Technol. 5 88

    [14]

    Nitsch J B, Tkachenko S V, Potthast S 2012 IEEE Trans. Electromagn. Compat. 54 1252

    [15]

    Solin J R 2011 IEEE Trans. Electromagn. Compat. 53 82

    [16]

    Solin J R 2012 IEEE Trans. Electromagn. Compat. 54 188

  • [1] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究.  , 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [2] 胡海涛, 郭爱敏. 双层硼烯纳米带的量子输运研究.  , 2022, 71(22): 227301. doi: 10.7498/aps.71.20221304
    [3] 陈传升, 王秉中, 王任. 基于时间反演技术的电磁器件端口场与内部场转换方法.  , 2021, 70(7): 070201. doi: 10.7498/aps.70.20201682
    [4] 郝建红, 公延飞, 范杰清, 蒋璐行. 一种内置条状金属板的双层金属腔体屏蔽效能的理论模型.  , 2016, 65(4): 044101. doi: 10.7498/aps.65.044101
    [5] 李亚晖, 梁闰富, 邱俊鹏, 林子扬, 屈军乐, 刘立新, 尹君, 牛憨笨. 紧聚焦条件下相干反斯托克斯拉曼散射信号场的矢量分析.  , 2014, 63(23): 233301. doi: 10.7498/aps.63.233301
    [6] 丁亮, 刘培国, 何建国, Amer Zakaria, Joe LoVetri. 金属圆柱腔体中使用非均一背景增强微波断层成像.  , 2014, 63(4): 044102. doi: 10.7498/aps.63.044102
    [7] 李文峰, 杨洪耕, 肖先勇, 李兴源. 土壤模型对地表电位影响及合理选取土壤模型方法研究.  , 2013, 62(14): 144102. doi: 10.7498/aps.62.144102
    [8] 张迷, 陈元平, 张再兰, 欧阳滔, 钟建新. 堆叠石墨片对锯齿型石墨纳米带电子输运的影响.  , 2011, 60(12): 127204. doi: 10.7498/aps.60.127204
    [9] 唐明春, 肖绍球, 高山山, 官剑, 王秉中. 新型电谐振人工异向介质抑制阵列天线单元间互耦.  , 2010, 59(3): 1851-1856. doi: 10.7498/aps.59.1851
    [10] 戴振宏, 倪 军. 基于格林函数的多终端量子链状体系电子输运性质的研究.  , 2005, 54(7): 3342-3345. doi: 10.7498/aps.54.3342
    [11] 施 展, 南策文. 铁电/铁磁三相颗粒复合材料的磁电性能计算.  , 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
    [12] 赵学安, 何军辉. 微量子腔结边电荷极化结构中的线性和二阶非线性动态电导性质的研究.  , 2004, 53(4): 1201-1206. doi: 10.7498/aps.53.1201
    [13] 郭汝海, 时红艳, 孙秀冬. 用格林函数法计算量子点中的应变分布.  , 2004, 53(10): 3487-3492. doi: 10.7498/aps.53.3487
    [14] 曹天德, 黄清龙. 二分量高温超导机理.  , 2002, 51(7): 1600-1603. doi: 10.7498/aps.51.1600
    [15] 曹天德. 带间作用与超导转变温度.  , 2002, 51(5): 1118-1121. doi: 10.7498/aps.51.1118
    [16] 王春雷, 秦自楷, 林多樑. 氢键铁电体相变的格林函数理论(Ⅱ).  , 1990, 39(4): 547-554. doi: 10.7498/aps.39.547
    [17] 王春雷, 张晶波, 秦自楷, 林多樑. 氢键铁电体相变的格林函数理论(Ⅰ).  , 1989, 38(11): 1740-1747. doi: 10.7498/aps.38.1740
    [18] 苏肇冰, 于渌, 周光召. 序参量-统计格林函数耦合方程组.  , 1984, 33(6): 805-813. doi: 10.7498/aps.33.805
    [19] 王维镛, 林中衡, 苏肇冰, 郝柏林. 闭路格林函数和非线性响应理论(Ⅰ).  , 1982, 31(11): 1483-1492. doi: 10.7498/aps.31.1483
    [20] 王维镛, 林中衡, 苏肇冰, 郝柏林. 闭路格林函数和非线性响应理论(Ⅱ).  , 1982, 31(11): 1493-1500. doi: 10.7498/aps.31.1493
计量
  • 文章访问数:  5766
  • PDF下载量:  305
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-20
  • 修回日期:  2014-06-26
  • 刊出日期:  2014-12-05

/

返回文章
返回
Baidu
map