搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力下变内角毛细驱动流研究

李永强 刘玲

引用本文:
Citation:

微重力下变内角毛细驱动流研究

李永强, 刘玲

A study of capillary flow in variable interior corners under microgravity

Li Yong-Qiang, Liu Ling
PDF
导出引用
  • 本文研究了在满足Concus-Finn条件时,微重力环境下内角沿容器轴线变化时的毛细驱动流问题,建立了变内角的毛细流动控制方程,获得了变内角流动的近似解析解,并与FLOW-3D软件的数值模拟结果进行了对比验证. 计算结果表明,随着时间的增大,近似解析解与数值解的相对误差越来越小,在6 s以后,相对误差不超过5%. 论文研究了不同结构参数对内角毛细流动的影响规律,得出液体前缘位置和液面高度均随内角、接触角、内角斜率和内角幂指数的增大而减小的结论. 在不同时刻,液体的液面高度随着时间的增大而增大,但在初始时刻存在一个常高度,该高度不随时间的变化而变化. 在空间流体管理时,可以根据本文的工作进行容器设计和选择适合的溶液.
    This paper investigates the capillary flows in variable interior corners along the axis when a microgravity environment and the Concus-Finn condition are satisfied. The governing equation for capillary-driven flows in variable interior corners is established, and an approximately analytic solution is obtained. Then we compare the approximately analytic solution with the numerical simulation results obtained using the software FLOW-3D. Results show that the relative error between the approximately analytical and numerical solutions is getting smaller and smaller with increasing time, and it will be less than 5% after 6 s. The influence of different parameters on the interior corner flow is studied using a set of typical parameters. Numerical results show that the liquid-front position and meniscus height decrease with increasing interior angles, contact angle, slope, and power exponent. The liquid meniscus height increases with the duration at different times. But it remains constant at the initial time. The conclusion of this paper can be applied when designing containers and choosing the suitable solution in the space fluid management.
    • 基金项目: 中国科学院国家微重力实验室开放课题.
    • Funds: Project supported by the National microgravity laboratory opened subject funded project, Chinese Academy of Sciences.
    [1]

    Hu W R, Xu S C 1999 Microgravity Fluid Mechanics (Beijing: Science Press) pp1-5 (in Chinese) [胡文瑞, 徐硕昌1999微重力流体力学(北京: 科学出版社)第1–5页]

    [2]

    Duan L, Kang Q 2008 Chin. Phys. B 17 3149

    [3]

    Xie H Q, Zhong Z, Zhang L Q, Liang G Y, Mizuseki H, Kawazoe Y 2012 Chin. Phys. B 12 124703

    [4]

    Mason G, Morrow R N 1991 J. Colloid Interface Sci. 141 262274

    [5]

    Dong M, Chatzis I 1995 J. Colloid Interface Sci. 172 278288

    [6]

    Wei Y X, Chen X Q, Huang Y Y 2011 Sci. China Ser E 41 1218 (in Chinese) [魏月兴, 陈小前, 黄奕勇2011中国科学: 技术科学41 12181224]

    [7]

    Weislogel M 1996 NASA-TM- 107364

    [8]

    Weislogel M M, Jenson R, Chen Y K, Collicott S H, Klatte J, Dreyer M 2009 Acta Astronaut 65 861869

    [9]

    Wang C X, Xu S H, Sun Z W, Hu W R 2010 Int. J. Heat Mass Trans. 53 18011807

    [10]

    Xu S H, Wang C X, Sun Z W, Hu W R 2007 J. Jpn. Soc. Microgravity Appl. 24 275278

    [11]

    Concus P, Finn R 1990 Microgravity Sci. Tec. 3 8792

    [12]

    Ransohoff T C, Radke C J 1988 J. Colloid Interface Sci. 121 392401

    [13]

    Chen Y K, Weislogel M M, Nardin C L 2006 J. Fluid Mech. 566 235271

    [14]

    Chen Y K, Weislogel M M, Bolleddula D A 2007 45th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 8-11, 2007 paper AIAA-2007-745

    [15]

    Xu S H, Zhou H W, Wang C X, Wang L W, Sun Z W 2013 Acta Phys. Sin. 62 134702 (in Chinese) [徐升华, 周宏伟, 王彩霞, 王林伟, 孙祉伟 2013 62 134702]

    [16]

    Li J H, Chen X Q, Huang Y Y, Bai Z Y 2012 Sci. China Ser E 42 957962 (in Chinese) [李京浩, 陈小前, 黄奕勇, 白玉铸2012中国科学: 技术科学42 957962]

    [17]

    Li Y Q, Zhang C H, Liu L, Duan L, Kang Q 2013 Acta Phys. Sin. 62 044701 (in Chinese) [李永强, 张晨辉, 刘玲, 段俐, 康琦 2013 62 044701]

    [18]

    Li Y Q, Liu L, Zhang C H, Duan L, Kang Q 2013 Acta Phys. Sin. 62 024701 (in Chinese) [李永强, 刘玲, 张晨辉, 段俐, 康琦 2013 62 024701]

    [19]

    Weislogel M M, Collicott S H 2002 40th AIAA Aerospace Sciences Meeting & Exhibt Reno, Nevada, January 14-17, 2002 paper AIAA-2002-0757

  • [1]

    Hu W R, Xu S C 1999 Microgravity Fluid Mechanics (Beijing: Science Press) pp1-5 (in Chinese) [胡文瑞, 徐硕昌1999微重力流体力学(北京: 科学出版社)第1–5页]

    [2]

    Duan L, Kang Q 2008 Chin. Phys. B 17 3149

    [3]

    Xie H Q, Zhong Z, Zhang L Q, Liang G Y, Mizuseki H, Kawazoe Y 2012 Chin. Phys. B 12 124703

    [4]

    Mason G, Morrow R N 1991 J. Colloid Interface Sci. 141 262274

    [5]

    Dong M, Chatzis I 1995 J. Colloid Interface Sci. 172 278288

    [6]

    Wei Y X, Chen X Q, Huang Y Y 2011 Sci. China Ser E 41 1218 (in Chinese) [魏月兴, 陈小前, 黄奕勇2011中国科学: 技术科学41 12181224]

    [7]

    Weislogel M 1996 NASA-TM- 107364

    [8]

    Weislogel M M, Jenson R, Chen Y K, Collicott S H, Klatte J, Dreyer M 2009 Acta Astronaut 65 861869

    [9]

    Wang C X, Xu S H, Sun Z W, Hu W R 2010 Int. J. Heat Mass Trans. 53 18011807

    [10]

    Xu S H, Wang C X, Sun Z W, Hu W R 2007 J. Jpn. Soc. Microgravity Appl. 24 275278

    [11]

    Concus P, Finn R 1990 Microgravity Sci. Tec. 3 8792

    [12]

    Ransohoff T C, Radke C J 1988 J. Colloid Interface Sci. 121 392401

    [13]

    Chen Y K, Weislogel M M, Nardin C L 2006 J. Fluid Mech. 566 235271

    [14]

    Chen Y K, Weislogel M M, Bolleddula D A 2007 45th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 8-11, 2007 paper AIAA-2007-745

    [15]

    Xu S H, Zhou H W, Wang C X, Wang L W, Sun Z W 2013 Acta Phys. Sin. 62 134702 (in Chinese) [徐升华, 周宏伟, 王彩霞, 王林伟, 孙祉伟 2013 62 134702]

    [16]

    Li J H, Chen X Q, Huang Y Y, Bai Z Y 2012 Sci. China Ser E 42 957962 (in Chinese) [李京浩, 陈小前, 黄奕勇, 白玉铸2012中国科学: 技术科学42 957962]

    [17]

    Li Y Q, Zhang C H, Liu L, Duan L, Kang Q 2013 Acta Phys. Sin. 62 044701 (in Chinese) [李永强, 张晨辉, 刘玲, 段俐, 康琦 2013 62 044701]

    [18]

    Li Y Q, Liu L, Zhang C H, Duan L, Kang Q 2013 Acta Phys. Sin. 62 024701 (in Chinese) [李永强, 刘玲, 张晨辉, 段俐, 康琦 2013 62 024701]

    [19]

    Weislogel M M, Collicott S H 2002 40th AIAA Aerospace Sciences Meeting & Exhibt Reno, Nevada, January 14-17, 2002 paper AIAA-2002-0757

  • [1] 石兰芳, 周先春, 莫嘉琪. 一类大气浅水波系统的广义变分迭代行波近似解.  , 2013, 62(23): 230202. doi: 10.7498/aps.62.230202
    [2] 李永强, 张晨辉, 刘玲, 段俐, 康琦. 微重力下圆管毛细流动解析近似解研究.  , 2013, 62(4): 044701. doi: 10.7498/aps.62.044701
    [3] 李永强, 刘玲, 张晨辉, 段俐, 康琦. 微重力环境下无限长柱体内角毛细流动解析近似解研究.  , 2013, 62(2): 024701. doi: 10.7498/aps.62.024701
    [4] 陆法林, 陈昌远, 尤源. 双环形Hulthn势束缚态的近似解析解.  , 2013, 62(20): 200301. doi: 10.7498/aps.62.200301
    [5] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究.  , 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [6] 陈阳益, 许弘莒, 张宪国. 无旋性前进重力波传递在均匀流中的Lagrange解析解与试验验证Ⅰ.理论解析解.  , 2012, 61(3): 034702. doi: 10.7498/aps.61.034702
    [7] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析.  , 2012, 61(11): 110505. doi: 10.7498/aps.61.110505
    [8] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析(Ⅱ).  , 2012, 61(15): 150503. doi: 10.7498/aps.61.150503
    [9] 莫嘉琪, 陈贤峰. 一类非线性扰动Nizhnik-Novikov-Veselov系统的孤立波近似解析解.  , 2010, 59(5): 2919-2923. doi: 10.7498/aps.59.2919
    [10] 杨沛, 陈勇, 李志斌. 离散修正KdV方程的解析近似解.  , 2010, 59(6): 3668-3673. doi: 10.7498/aps.59.3668
    [11] 石兰芳, 莫嘉琪. 一类扰动非线性发展方程的类孤子同伦近似解析解.  , 2009, 58(12): 8123-8126. doi: 10.7498/aps.58.8123
    [12] 莫嘉琪. 一类广义Canard系统的近似解析解.  , 2009, 58(2): 695-698. doi: 10.7498/aps.58.695
    [13] 张艳, 郑连存, 张欣欣. 边界耦合的Marangoni对流边界层问题的近似解析解.  , 2009, 58(8): 5501-5506. doi: 10.7498/aps.58.5501
    [14] 林万涛, 莫嘉琪. 一类全球气候气-海耦合振子机理的近似解析解.  , 2008, 57(5): 2633-2637. doi: 10.7498/aps.57.2633
    [15] 卫高峰, 龙超云, 秦水介, 张 欣. 具有Manning-Rosen标量势与矢量势的Klein-Gordon方程的任意l波束缚态近似解析解.  , 2008, 57(11): 6730-6735. doi: 10.7498/aps.57.6730
    [16] 郑连存, 冯志丰, 张欣欣. 一类非线性微分方程的近似解析解.  , 2007, 56(3): 1549-1554. doi: 10.7498/aps.56.1549
    [17] 莫嘉琪, 王 辉, 林万涛. 地-气耦合动力系统的近似解析解.  , 2006, 55(2): 485-489. doi: 10.7498/aps.55.485
    [18] 郑连存, 盛晓艳, 张欣欣. 一类Marangoni对流边界层方程的近似解析解.  , 2006, 55(10): 5298-5304. doi: 10.7498/aps.55.5298
    [19] 毛杰健, 杨建荣. 变系数KP方程新的类孤波解和解析解.  , 2005, 54(11): 4999-5002. doi: 10.7498/aps.54.4999
    [20] 肖春燕, 雷银照. 分层球形导体中任意位置直流电流元产生电位的解析解.  , 2005, 54(4): 1950-1957. doi: 10.7498/aps.54.1950
计量
  • 文章访问数:  6027
  • PDF下载量:  540
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-02
  • 修回日期:  2014-07-03
  • 刊出日期:  2014-11-05

/

返回文章
返回
Baidu
map