搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两电极等离子体合成射流激励器工作特性研究

王林 夏智勋 罗振兵 周岩 张宇

引用本文:
Citation:

两电极等离子体合成射流激励器工作特性研究

王林, 夏智勋, 罗振兵, 周岩, 张宇

Experimental study on the characteristics of a two-electrode plasma synthetic jet actuator

Wang Lin, Xia Zhi-Xun, Luo Zhen-Bing, Zhou Yan, Zhang Yu
PDF
导出引用
  • 采用放电测量和高速阴影技术对两电极等离子体合成射流激励器工作特性进行了系统实验研究. 实验表明:激励器工作击穿电压和放电峰值电流随激励器所处环境压强的降低和放电频率的增大而减小,激励器腔体内的放电过程为火花电弧放电. 典型的等离子体合成射流流场包含有一道前驱激波和一股呈蘑菇状的高速射流. 在整个射流发展过程中,前驱激波以当地声速恒速传播,不随激励器条件的改变而变化,波的强度则随着激励器出口直径的减小、腔体体积的增大、环境压强的降低和放电频率的升高而减小. 激励器腔体体积和放电频率的增加会降低腔内气体的加热效果,并减小射流速度. 激励器出口直径和环境压强对射流速度的影响按规律变化且存在最佳值. 本文实各验条件下激励器都产生了明显的前驱激波和高速射流,具有实现高速流场主动流动控制的应用潜能.
    Performance of a two-electrode plasma synthetic jet actuator has been experimentally studied by discharge measurements with high-speed shadowgraphy technology. Results show that the breakdown voltage and the peak discharge current of the actuator may be decreased by decreasing the ambient pressure and increasing the discharge frequency. The discharge developed in the actuator cavity is a spark-arc discharge. In the actuator could be created a strong “precursor shock” and a high kinetic energy jet. During the development of the plasma synthetic jet, the speed of the “precursor shock” is invariable and the jet propagates with an approximately local sonic velocity (350 m/s). But with decreasing jet exit diameter and ambient pressure, the increase of the cavity volume and the discharge frequency could lead to decreasing strength of the “precursor shock”. Heating efficiency of the gas in the cavity will decrease with the increase of the cavity volume and discharge frequency, and the jet velocity is decreased as well. The jet exit diameter and the ambient pressure can have their optimal values for affecting the velocity of the jet. Under all the working conditions we have studied, the plasma actuator may create a strong “precursor shock” and a high-speed jet, and also may have the potential to be used in high-speed active flow control.
    • 基金项目: 国家自然科学基金(批准号:11372349)、全国优秀博士论文作者专项资金(批准号:201058)和国防科技大学杰出青年基金(批准号:CJ110101)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11372349), the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201058), and the Natural Science Fund for Distinguished Young Scholars of National University of Defense Technology, China (Grant No. CJ110101).
    [1]

    Cattafesta L N, Sheplak M 2011 Annu. Rev. Fluid Mech. 43 247

    [2]

    Wang L, Luo Z B, Xia Z X, Liu B, Deng X 2012 Sci China Tech. Sci. 55 2225

    [3]

    Moreau E 2007 J. Phys. D: Appl. Phys. 40 605

    [4]

    Wang J J, Choi K S, Feng L H, Jukes T N, Whalley R D 2013 Prog. Aerospace Sci. 62 52

    [5]

    Nie W S, Cheng Y F, Che X K 2012 Adv. Mech. 42 6(in Chinese) [聂万胜, 程钰锋, 车学科 2012 力学进展 42 6]

    [6]

    Corke T C, Enloe C L, Wilkinson S P 2010 Annu. Rev. Fluid Mech. 42 505

    [7]

    Roth J 2003 Phys. Plasmas. 42 165503

    [8]

    Zhu Y F, Wu Y, Cui W, Li Y H, Jia M 2013 J. Phys. D: Appl. Phys. 43 355205

    [9]

    Nishihara M, Takashima K, Rich J, Adamovich I 2011 Phys. Fluids 23 066101

    [10]

    Moreau E, Labergue A Touchard G 2005 J. Adv. Oxydation 8 241

    [11]

    Wang J, Li Y H, Cheng B Q, Su C B, Song H M, Wu Y 2009 Acta Phys. Sin. 58 5513(in Chinese) [王健, 李应红, 程邦勤, 苏长兵, 宋慧敏, 吴云 2009 58 5513]

    [12]

    Merriman S, Ploenjes E, Palm P, Adamovich I V 2001 AIAA J. 39 1547

    [13]

    Grossman K R, Cybyk B Z, vanWie D M 2003 AIAA Paper 2003-57

    [14]

    Narayanaswamy V, Raia L L, Clemens N T 2010 AIAA J. 48 297

    [15]

    Wang L, Xia Z X, Luo Z B, Chen J 2014 AIAA J. 52 879

    [16]

    Cybyk B Z, Simon D H, LandⅢ H B, Chen J, Katz J 2006 AIAA Paper 2006-478

    [17]

    Popkin S H, Cybyk B Z, Land Ⅲ H B, Emerick Ⅱ T M, Foster C H, Alvi F S 2013 AIAA Paper 2013-0322

    [18]

    Haack S J, Taylor T, Emhoff J, Cybyk B Z 2010 AIAA Paper 2010-4979

    [19]

    Taylor T M, Cybyk B Z 2008 AIAA Paper 2008-2608

    [20]

    Wang L, Luo Z B, Xia Z X, Liu B 2013 Acta Phys. Sin. 62 125207(in Chinese) [王林, 罗振兵, 夏智勋, 刘冰 2013 62 125207]

    [21]

    Ko H S, Haack S J, Land Ⅲ H B, Cybyk B Z, Katz J, Kim H J 2010 Flow Meas. Instrum. 21 443

    [22]

    Reedy T M, Kale N V, Dutton J C, Elliott G S 2012 AIAA Paper 2012-0904

    [23]

    Shin J 2010 Chin. J. Aeronaut. 23 518

    [24]

    Belinger A, Hardy P, Barricau P, Cambronne J P, Caruana D 2011 J. Phys. D: Appl. Phys. 44 365201

    [25]

    Jin D, Li Y H, Jia M, Song H M, Cui W, Sun Q, Li Y F 2013 Plasma Sci. Technol. 15 1034

    [26]

    Narayanaswamy V, Raja L L, Clemens N T 2012 Phys. Fluids 24 076101

    [27]

    Emerick Ⅱ T M, Ali M Y, Foster C H, Alvi F S, Popkin S H, Cybyk B Z 2012 AIAA Paper 2012-2814

    [28]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer Press) p246

    [29]

    Xu X J, Zhu D C 1995 Physics of Gas Discharge (Shanghai: Fudan University Press) P215 (in Chinese) [徐学基, 诸定昌1995气体放电物理(上海: 复旦大学出版社)第215页]

    [30]

    GreasonW D, Kucerovsky Z, Bulach S, Flatley M W 1997 IEEE Trans. Ind. Applicat. 33 1519

  • [1]

    Cattafesta L N, Sheplak M 2011 Annu. Rev. Fluid Mech. 43 247

    [2]

    Wang L, Luo Z B, Xia Z X, Liu B, Deng X 2012 Sci China Tech. Sci. 55 2225

    [3]

    Moreau E 2007 J. Phys. D: Appl. Phys. 40 605

    [4]

    Wang J J, Choi K S, Feng L H, Jukes T N, Whalley R D 2013 Prog. Aerospace Sci. 62 52

    [5]

    Nie W S, Cheng Y F, Che X K 2012 Adv. Mech. 42 6(in Chinese) [聂万胜, 程钰锋, 车学科 2012 力学进展 42 6]

    [6]

    Corke T C, Enloe C L, Wilkinson S P 2010 Annu. Rev. Fluid Mech. 42 505

    [7]

    Roth J 2003 Phys. Plasmas. 42 165503

    [8]

    Zhu Y F, Wu Y, Cui W, Li Y H, Jia M 2013 J. Phys. D: Appl. Phys. 43 355205

    [9]

    Nishihara M, Takashima K, Rich J, Adamovich I 2011 Phys. Fluids 23 066101

    [10]

    Moreau E, Labergue A Touchard G 2005 J. Adv. Oxydation 8 241

    [11]

    Wang J, Li Y H, Cheng B Q, Su C B, Song H M, Wu Y 2009 Acta Phys. Sin. 58 5513(in Chinese) [王健, 李应红, 程邦勤, 苏长兵, 宋慧敏, 吴云 2009 58 5513]

    [12]

    Merriman S, Ploenjes E, Palm P, Adamovich I V 2001 AIAA J. 39 1547

    [13]

    Grossman K R, Cybyk B Z, vanWie D M 2003 AIAA Paper 2003-57

    [14]

    Narayanaswamy V, Raia L L, Clemens N T 2010 AIAA J. 48 297

    [15]

    Wang L, Xia Z X, Luo Z B, Chen J 2014 AIAA J. 52 879

    [16]

    Cybyk B Z, Simon D H, LandⅢ H B, Chen J, Katz J 2006 AIAA Paper 2006-478

    [17]

    Popkin S H, Cybyk B Z, Land Ⅲ H B, Emerick Ⅱ T M, Foster C H, Alvi F S 2013 AIAA Paper 2013-0322

    [18]

    Haack S J, Taylor T, Emhoff J, Cybyk B Z 2010 AIAA Paper 2010-4979

    [19]

    Taylor T M, Cybyk B Z 2008 AIAA Paper 2008-2608

    [20]

    Wang L, Luo Z B, Xia Z X, Liu B 2013 Acta Phys. Sin. 62 125207(in Chinese) [王林, 罗振兵, 夏智勋, 刘冰 2013 62 125207]

    [21]

    Ko H S, Haack S J, Land Ⅲ H B, Cybyk B Z, Katz J, Kim H J 2010 Flow Meas. Instrum. 21 443

    [22]

    Reedy T M, Kale N V, Dutton J C, Elliott G S 2012 AIAA Paper 2012-0904

    [23]

    Shin J 2010 Chin. J. Aeronaut. 23 518

    [24]

    Belinger A, Hardy P, Barricau P, Cambronne J P, Caruana D 2011 J. Phys. D: Appl. Phys. 44 365201

    [25]

    Jin D, Li Y H, Jia M, Song H M, Cui W, Sun Q, Li Y F 2013 Plasma Sci. Technol. 15 1034

    [26]

    Narayanaswamy V, Raja L L, Clemens N T 2012 Phys. Fluids 24 076101

    [27]

    Emerick Ⅱ T M, Ali M Y, Foster C H, Alvi F S, Popkin S H, Cybyk B Z 2012 AIAA Paper 2012-2814

    [28]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer Press) p246

    [29]

    Xu X J, Zhu D C 1995 Physics of Gas Discharge (Shanghai: Fudan University Press) P215 (in Chinese) [徐学基, 诸定昌1995气体放电物理(上海: 复旦大学出版社)第215页]

    [30]

    GreasonW D, Kucerovsky Z, Bulach S, Flatley M W 1997 IEEE Trans. Ind. Applicat. 33 1519

  • [1] 王媛媛, 王羡之, 宋贾俊, 张旭, 王兆华, 魏志义. 超强激光在均匀等离子体中的背向拉曼散射放大机制.  , 2022, 71(5): 055202. doi: 10.7498/aps.71.20211270
    [2] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性.  , 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [3] 王宏宇, 李军, 金迪, 代辉, 甘甜, 吴云. 激波/边界层干扰对等离子体合成射流的响应特性.  , 2017, 66(8): 084705. doi: 10.7498/aps.66.084705
    [4] 王林, 罗振兵, 夏智勋, 刘冰. 等离子体合成射流能量效率及工作特性研究.  , 2013, 62(12): 125207. doi: 10.7498/aps.62.125207
    [5] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 电负性等离子体磁鞘的玻姆判据.  , 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [6] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究.  , 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [7] 邹秀, 籍延坤, 邹滨雁. 斜磁场中碰撞等离子体鞘层的玻姆判据.  , 2010, 59(3): 1902-1906. doi: 10.7498/aps.59.1902
    [8] 李宏伟, 韩建伟, 黄建国, 蔡明辉, 李小银, 高著秀. 利用超高速撞击产生的等离子体测量微粒速度的方法研究.  , 2010, 59(2): 1385-1390. doi: 10.7498/aps.59.1385
    [9] 赵建明, 张临杰, 李昌勇, 贾锁堂. 里德伯原子向超冷等离子体的自发转化.  , 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [10] 张晓丹, 张发荣, Amanatides Elefterious, Mataras Dimitris, 赵 颖. 硅薄膜沉积中等离子体辉光功率和阻抗的测试分析.  , 2007, 56(9): 5309-5313. doi: 10.7498/aps.56.5309
    [11] 赵国伟, 王之江, 徐跃民, 粱志伟, 徐 杰. 射频激励等离子体非线性效应的FDTD数值模拟.  , 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [12] 安治永, 李应红, 吴 云, 苏长兵, 宋慧敏. 对称等离子体激励器系统电场仿真研究.  , 2007, 56(8): 4778-4784. doi: 10.7498/aps.56.4778
    [13] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析.  , 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [14] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成.  , 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [15] 张 民, 吴振森. 脉冲波在空间等离子体介质中传播的矩分析及其应用.  , 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [16] 田杨萌, 王彩霞, 姜 明, 程新路, 杨向东. 惰性物质等离子体物态方程研究.  , 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [17] 谢鸿全, 刘濮鲲. 磁化等离子体填充螺旋线的色散方程.  , 2006, 55(5): 2397-2402. doi: 10.7498/aps.55.2397
    [18] 张 丽, 李向东, 蒋新革. 等离子体效应对类氦氖Kα线系电偶极辐射的影响.  , 2006, 55(9): 4501-4505. doi: 10.7498/aps.55.4501
    [19] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究.  , 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [20] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析.  , 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
计量
  • 文章访问数:  6955
  • PDF下载量:  572
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-17
  • 修回日期:  2014-05-09
  • 刊出日期:  2014-10-05

/

返回文章
返回
Baidu
map