-
利用机械化算法得到了Kaup-Kupershmidt方程的非局域对称、约化,通过解约化方程得到了该方程的一些新的精确解.
-
关键词:
- 非局域对称 /
- Kaup-Kupershmidt方程 /
- 对称约化 /
- 精确解
In this paper, using the mechanization-method obtained nonlocal symmetry and reduction of the Kaup-Kupershmidt equation and solving the reduction equation, new solutions to the equation are obtained.-
Keywords:
- nonlocal symmetry /
- Kaup-Kupershmidt equation /
- symmetry reduction /
- exact solutions
[1] Xin X P, Liu X Q, Zhang L L 2010 Appl. Math. Comput. 215 3669
[2] Liu N 2010 Appl. Math. Comput. 217 4178
[3] Gardner C S, Greene J M, Kruskal M D, Miura M R 1967 Phys. Rev. Lett. 19 1095
[4] Bassom A P, Clarkson P A 1995 Stud. Appl. Math. 95 1
[5] Hirota R 1971 Phys. Rev. Lett. 27 1192
[6] Wang M L, Zhou Y B, Li Z B 1996 Phys. Lett. A 216 67
[7] Fan E G 2000 Phys. Lett. A 265 353
[8] Wang M L, Li X Z, Zhang J L 2008 Phys. Lett. A 372 417
[9] Lou S Y, Ma H C 2005 J. Phys. A: Math. Gen. 38 L129
[10] Li N, Liu X Q 2013 Acta Phys. Sin. 62 160203(in Chinese)[李宁, 刘希强 2013 62 160203]
[11] Fan E G 2000 Phys. Lett. A 277 212
[12] Elwakil S A, El-Labany S K, Zahran M A 2002 Phys. Lett. A 299 179
[13] Liang L W, Li X D, Li Y X 2009 Acta Phys. Sin. 58 2159(in Chinese)[梁立为, 李兴东, 李玉霞 2009 58 2159]
[14] Xin X P, Miao Q, Chen Y 2014 Chin. Phys. B 23 010203
[15] Lou S Y 1994 Chin. Phys. Lett. 11 593
[16] Lou S Y, Hu X B 1997 J. Phys. A: Math. Gen. 30 L95
[17] Vinogradov A M, Krasil'shchik I S 1980 Dokl. Akad. NaukSSSR. 253 1289
[18] Bluman G W, Cheviakov A F 2005 J. Math. Phys. 46 123506
[19] Bluman G W 2005 J. Math. Phys. 46 023505
[20] Galas F 1992 J. Phys. A: Math. Gen. 25 L981
[21] Lou S Y, Hu X B 1997 J. Phys. A: Math. Gen. 30 L95
[22] Fordy A P, Gibbous J 1980 Phys. Lett. A 75 325
[23] Zhao X Q, Zhi H Y, Zhang H Q 2006 Chaos Solition. Fract. 28 112
-
[1] Xin X P, Liu X Q, Zhang L L 2010 Appl. Math. Comput. 215 3669
[2] Liu N 2010 Appl. Math. Comput. 217 4178
[3] Gardner C S, Greene J M, Kruskal M D, Miura M R 1967 Phys. Rev. Lett. 19 1095
[4] Bassom A P, Clarkson P A 1995 Stud. Appl. Math. 95 1
[5] Hirota R 1971 Phys. Rev. Lett. 27 1192
[6] Wang M L, Zhou Y B, Li Z B 1996 Phys. Lett. A 216 67
[7] Fan E G 2000 Phys. Lett. A 265 353
[8] Wang M L, Li X Z, Zhang J L 2008 Phys. Lett. A 372 417
[9] Lou S Y, Ma H C 2005 J. Phys. A: Math. Gen. 38 L129
[10] Li N, Liu X Q 2013 Acta Phys. Sin. 62 160203(in Chinese)[李宁, 刘希强 2013 62 160203]
[11] Fan E G 2000 Phys. Lett. A 277 212
[12] Elwakil S A, El-Labany S K, Zahran M A 2002 Phys. Lett. A 299 179
[13] Liang L W, Li X D, Li Y X 2009 Acta Phys. Sin. 58 2159(in Chinese)[梁立为, 李兴东, 李玉霞 2009 58 2159]
[14] Xin X P, Miao Q, Chen Y 2014 Chin. Phys. B 23 010203
[15] Lou S Y 1994 Chin. Phys. Lett. 11 593
[16] Lou S Y, Hu X B 1997 J. Phys. A: Math. Gen. 30 L95
[17] Vinogradov A M, Krasil'shchik I S 1980 Dokl. Akad. NaukSSSR. 253 1289
[18] Bluman G W, Cheviakov A F 2005 J. Math. Phys. 46 123506
[19] Bluman G W 2005 J. Math. Phys. 46 023505
[20] Galas F 1992 J. Phys. A: Math. Gen. 25 L981
[21] Lou S Y, Hu X B 1997 J. Phys. A: Math. Gen. 30 L95
[22] Fordy A P, Gibbous J 1980 Phys. Lett. A 75 325
[23] Zhao X Q, Zhi H Y, Zhang H Q 2006 Chaos Solition. Fract. 28 112
计量
- 文章访问数: 6676
- PDF下载量: 523
- 被引次数: 0