搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(2+1)维高阶Broer-Kaup系统的非局域对称及相互作用解

辛祥鹏 刘汉泽 刘希强

引用本文:
Citation:

(2+1)维高阶Broer-Kaup系统的非局域对称及相互作用解

辛祥鹏, 刘汉泽, 刘希强

Nonlocal symmetries and interaction solutions of the (2+1)-dimensional higher order Broer-Kaup system

Xin Xiang-Peng, Liu Han-Ze, Liu Xi-Qiang
PDF
导出引用
  • 利用非局域对称方法及相容tanh展开法研究了(2+1)维高阶Broer-Kaup系统.通过对Broer-Kaup系统的留数对称进行局域化,把非局域对称转化成等价的李点对称,同时得到了相应的对称群.利用相容tanh展开方法,得到了(2+1)维高阶Broer-Kaup系统的多种形式的波与孤立子的相互作用解,如椭圆周期波与孤立子等.为了研究这些解的动力学行为,本文给出了解的相应图像.
    Finding explicit solutions of nonlinear partial differential equation is one of the most important problems in mathematical physics. And it is very difficult to find interaction solutions among different types of nonlinear excitations except for soliton-soliton interactions. It is known that Painlev analysis is an important method to investigate the integrable property of a given nonlinear evolution equation, and the truncated Painlev expansion method is a straight way to provide auto-Bcklund transformation and analytic solution, furthermore, it can also be used to obtain nonlocal symmetries. Symmetry group theory plays an important role in constructing explicit solutions, whether the equations are integrable or not. By applying the nolocal symmetry method, many new exact group invariant solution can be obtained. This method is greatly valid for constructing various interaction solutions between different types of excitations, for example, solitons, cnoidal waves, Painlev waves, Airy waves, Bessel waves, etc. It has been revealed that many more integrable systems are consistent tanh expansion (CTE) solvable and possess quite similar interaction solutions which can be described by the same determining equation with different constant constraints. In this paper, the (2+1)-dimensional higher-order Broer-Kaup (HBK) system is studied by the nonlocal symmetry method and CTE method. By using the nonlocal symmetry method, the residual symmetries of (2+1)-dimensional higher order Broer-Kaup system can be localized to Lie point symmetries after introducing suitable prolonged systems, and symmetry groups can also be obtained from the Lie point symmetry approach via the localization of the residual symmetries. By developing the truncated Painlev analysis, we use the CTE method to solve the HBK system. It is found that the HBK system is not only integrable under some nonstandard meaning but also CTE solvable. Some interaction solutions among solitons and other types of nonlinear waves which may be explicitly expressed by the Jacobi elliptic functions and the corresponding elliptic integral are constructed. To leave it clear, we give out four types of soliton+cnoidal periodic wave solutions. In order to study their dynamic behaviors, corresponding images are explicitly given.
      通信作者: 辛祥鹏, xinxiangpeng2012@gmail.com
    • 基金项目: 国家自然科学基金(批准号:11505090,11171041,11405103,11447220)和山东省优秀中青年科学家奖励基金(批准号:BS2015SF009)资助的课题.
      Corresponding author: Xin Xiang-Peng, xinxiangpeng2012@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11505090, 11171041, 11405103, 11447220) and the Research Award Foundation for Outstanding Young Scientists of Shandong Province, China (Grant No. BS2015SF009).
    [1]

    Gardner C S, Greene J M, Kruskal M D, Miura R M 1967 Phys. Rev. Lett. 19 1095

    [2]

    Ablowitz M J, Kaup D J, Newell A C, Segur H 1973 Phys. Rev. Lett. 30 1262

    [3]

    Weiss J, Tabor M, Carnevale G 1983 J. Math. Phys. 24 522

    [4]

    Conte R 1989 Phys. Lett. A 140 383

    [5]

    Yan Z Y 2015 Nonlinear Dyn. 82 119

    [6]

    Liu H Z, Li J B, Liu L 2010 Nonlinear Dyn. 59 497

    [7]

    Fan E G 2000 Acta Phys. Sin. 49 1409 (in Chinese)[范恩贵2000 49 1409]

    [8]

    Yan Z Y, Zhang H Q 2000 Acta Phys. Sin. 49 2113 (in Chinese)[闫振亚, 张鸿庆2000 49 2113]

    [9]

    Zhang H P, Chen Y, Li B 2009 Acta Phys. Sin. 58 7393 (in Chinese)[张焕萍, 陈勇, 李彪2009 58 7393]

    [10]

    Lou S Y, Hu X B 1997 J. Phys. A:Math. Gen. 30 L95

    [11]

    Galas F 1992 J. Phys. A:Math. Gen. 25 L981

    [12]

    Hu X R, Lou S Y, Chen Y 2012 Phys. Rev. E 85 056607

    [13]

    Hu X R, Chen Y 2015 Chin. Phys. B 24 090203

    [14]

    Huang L L, Chen Y 2016 Chin. Phys. B 25 060201

    [15]

    Huang L L, Chen Y, Ma Z Y 2016 Commun. Theor. Phys. 66 189

    [16]

    Tang X Y, Lou S Y 2003 J. Math. Phys. 44 4000

    [17]

    Qian X M, Lou S Y, Hu X B 2004 J. Phys. A:Math. Gen. 37 2401

    [18]

    Fan E G, Zhang J 2002 Phys. Lett. A 305 383

    [19]

    Fan E G 2000 Phys. Lett. A 265 353

    [20]

    Wang Y H 2014 Appl. Math. Lett. 38 100

    [21]

    Cheng W G, Li B, Chen Y 2015 Commun. Nonlinear Sci. Numer. Simulat. 29 198

    [22]

    Yang D, Lou S Y, Yu W F 2013 Commun. Theor. Phys. 60 387

    [23]

    Chen C L, Lou S Y 2014 Commun. Theor. Phys. 61 545

    [24]

    Lou S Y, Cheng X P, Tang X Y 2014 Chin. Phys. Lett. 31 070201

    [25]

    Lou S Y, Hu X B 1997 J. Math. Phys. 38 6401

    [26]

    Lin J, Li H M 2002 Z. Naturforsch. 57a 929

    [27]

    Li D S, Gao F, Zhang H Q 2004 Chaos Solitons Fract. 20 1021

    [28]

    Shin H J 2004 J. Phys. A:Math. Gen. 37 8017

    [29]

    Shin H J 2005 Phys. Rev. E 71 036628

  • [1]

    Gardner C S, Greene J M, Kruskal M D, Miura R M 1967 Phys. Rev. Lett. 19 1095

    [2]

    Ablowitz M J, Kaup D J, Newell A C, Segur H 1973 Phys. Rev. Lett. 30 1262

    [3]

    Weiss J, Tabor M, Carnevale G 1983 J. Math. Phys. 24 522

    [4]

    Conte R 1989 Phys. Lett. A 140 383

    [5]

    Yan Z Y 2015 Nonlinear Dyn. 82 119

    [6]

    Liu H Z, Li J B, Liu L 2010 Nonlinear Dyn. 59 497

    [7]

    Fan E G 2000 Acta Phys. Sin. 49 1409 (in Chinese)[范恩贵2000 49 1409]

    [8]

    Yan Z Y, Zhang H Q 2000 Acta Phys. Sin. 49 2113 (in Chinese)[闫振亚, 张鸿庆2000 49 2113]

    [9]

    Zhang H P, Chen Y, Li B 2009 Acta Phys. Sin. 58 7393 (in Chinese)[张焕萍, 陈勇, 李彪2009 58 7393]

    [10]

    Lou S Y, Hu X B 1997 J. Phys. A:Math. Gen. 30 L95

    [11]

    Galas F 1992 J. Phys. A:Math. Gen. 25 L981

    [12]

    Hu X R, Lou S Y, Chen Y 2012 Phys. Rev. E 85 056607

    [13]

    Hu X R, Chen Y 2015 Chin. Phys. B 24 090203

    [14]

    Huang L L, Chen Y 2016 Chin. Phys. B 25 060201

    [15]

    Huang L L, Chen Y, Ma Z Y 2016 Commun. Theor. Phys. 66 189

    [16]

    Tang X Y, Lou S Y 2003 J. Math. Phys. 44 4000

    [17]

    Qian X M, Lou S Y, Hu X B 2004 J. Phys. A:Math. Gen. 37 2401

    [18]

    Fan E G, Zhang J 2002 Phys. Lett. A 305 383

    [19]

    Fan E G 2000 Phys. Lett. A 265 353

    [20]

    Wang Y H 2014 Appl. Math. Lett. 38 100

    [21]

    Cheng W G, Li B, Chen Y 2015 Commun. Nonlinear Sci. Numer. Simulat. 29 198

    [22]

    Yang D, Lou S Y, Yu W F 2013 Commun. Theor. Phys. 60 387

    [23]

    Chen C L, Lou S Y 2014 Commun. Theor. Phys. 61 545

    [24]

    Lou S Y, Cheng X P, Tang X Y 2014 Chin. Phys. Lett. 31 070201

    [25]

    Lou S Y, Hu X B 1997 J. Math. Phys. 38 6401

    [26]

    Lin J, Li H M 2002 Z. Naturforsch. 57a 929

    [27]

    Li D S, Gao F, Zhang H Q 2004 Chaos Solitons Fract. 20 1021

    [28]

    Shin H J 2004 J. Phys. A:Math. Gen. 37 8017

    [29]

    Shin H J 2005 Phys. Rev. E 71 036628

  • [1] 刘萍, 徐恒睿, 杨建荣. Boussinesq方程的Lax对、Bäcklund变换、对称群变换和Riccati展开相容性.  , 2020, 69(1): 010203. doi: 10.7498/aps.69.20191316
    [2] 王振立, 刘希强. Kaup-Kupershmidt方程的非局域对称及新的精确解.  , 2014, 63(18): 180205. doi: 10.7498/aps.63.180205
    [3] 陆大全, 祁玲敏, 杨振军, 张超, 胡巍. (1+2)维热非局域介质中的双光束远程相互作用数值模拟研究.  , 2013, 62(6): 064213. doi: 10.7498/aps.62.064213
    [4] 高星辉, 杨振军, 周罗红, 郑一周, 陆大全, 胡巍. 非局域程度对空间暗孤子相互作用的影响.  , 2011, 60(8): 084213. doi: 10.7498/aps.60.084213
    [5] 张霞萍, 刘友文. 强非局域非线性介质中拉盖尔-高斯型光孤子相互作用.  , 2011, 60(8): 084212. doi: 10.7498/aps.60.084212
    [6] 张霞萍. 强非局域空间三维光孤子短程相互作用.  , 2011, 60(3): 034211. doi: 10.7498/aps.60.034211
    [7] 郑亚建, 宣文涛, 陆大全, 欧阳世根, 胡巍, 郭旗. 功率控制的强非局域空间光孤子短程相互作用.  , 2010, 59(2): 1075-1081. doi: 10.7498/aps.59.1075
    [8] 吕大昭, 崔艳英, 刘长河, 张艳. mKdV-sine-Gordon方程丰富的相互作用解.  , 2010, 59(10): 6793-6798. doi: 10.7498/aps.59.6793
    [9] 杨平保, 曹龙贵, 胡 巍, 朱叶青, 郭 旗, 杨湘波. 向列相液晶中强非局域空间光孤子的相互作用.  , 2008, 57(1): 285-290. doi: 10.7498/aps.57.285
    [10] 曹龙贵, 陆大全, 胡 巍, 杨平保, 朱叶青, 郭 旗. 亚强非局域空间光孤子的相互作用.  , 2008, 57(10): 6365-6372. doi: 10.7498/aps.57.6365
    [11] 黄春福, 郭 儒, 刘思敏. 多个部分非相干光孤子的相互作用.  , 2007, 56(2): 908-915. doi: 10.7498/aps.56.908
    [12] 许超彬, 郭 旗. (1+2)维强非局域空间光孤子的相互作用.  , 2005, 54(11): 5194-5200. doi: 10.7498/aps.54.5194
    [13] 谢逸群, 郭 旗. 非局域克尔介质中空间光孤子的相互作用.  , 2004, 53(9): 3020-3024. doi: 10.7498/aps.53.3020
    [14] 赵明文, 夏曰源, 马玉臣, 刘向东, 英敏菊. 非迭代冻结密度近似方法在计算氢键相互作用的合理性研究.  , 2002, 51(11): 2440-2445. doi: 10.7498/aps.51.2440
    [15] 张解放, 陈芳跃. 截断展开方法和广义变系数KdV方程新的精确类孤子解.  , 2001, 50(9): 1648-1650. doi: 10.7498/aps.50.1648
    [16] 谭维翰, 闫珂柱. 解有排斥相互作用中性原子的Bose-Einstein凝聚的一般方法.  , 1999, 48(11): 1983-1991. doi: 10.7498/aps.48.1983
    [17] 韩平, 楼森岳. 与一个非局域对称有关的Kaup-Kupershmidt方程新的精确解.  , 1997, 46(7): 1249-1253. doi: 10.7498/aps.46.1249
    [18] 左维, 王顺金. 时间有关的广义谐振子与外场的相互作用 SU(1,1)(?)h(3)线性非自治量子系统的严格解.  , 1995, 44(9): 1353-1352. doi: 10.7498/aps.44.1353
    [19] 陈学俊, 郑良友. (e,2e)的多重散射展开方法.  , 1991, 40(10): 1595-1600. doi: 10.7498/aps.40.1595
    [20] 魏国柱. 对称Anderson晶格基态的局域方法近似.  , 1987, 36(11): 1433-1440. doi: 10.7498/aps.36.1433
计量
  • 文章访问数:  6653
  • PDF下载量:  410
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-19
  • 修回日期:  2016-08-22
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map