-
采用斜入射热丝化学气相沉积技术(OAD-HWCVD),研究了气流入射角度()对氢化非晶硅(a-Si:H)薄膜表面和微结构的影响. 实验发现,薄膜厚度为1 m时,均方根粗糙度与tan成指数关系;在入射角度为75时,薄膜表面由自仿射表面转变为mound表面. 采用拉曼谱和红外谱表征了硅薄膜的微结构随气流入射角度的变化. 在薄膜转变为mound表面生长之前,随入射角度的增加,准局域的影蔽效应使得薄膜中微空洞的数目及尺寸增加,导致薄膜微结构因子升高、致密度下降、薄膜质量变差. 在薄膜转变为mound表面生长之后,非局域的影蔽效应导致大尺度的空洞,同时薄膜中以Si-Hn(n 2)形式存在的氢增多. 本文以非晶硅薄膜为例,结合标度理论,分析了薄膜生长过程中的表面形貌和微结构与影蔽效应的关系.Influences of gas incident angle () on surface morphology and microstructure of hydrogenated amorphous silicon (a-Si:H) thin films are investigated, which were grown using an oblique angle hot wire chemical vapor deposition (OAD-HWCVD) technique. An exponential relationship between the tan and RMS roughness is observed. The film surface morphology transforms from a self-affine surface into a mounded surface when the incident angle is larger than a critical angle c(60 c 75). Influences of on the microstructural properties of silicon thin films are characterized using Raman scattering and FT-IR measurements. As c, owing to the qusai-local shadowing effect, increasing increases the quantity and size of micro-voids, leading to the decrease of film density and quality. For c, the nonlocal shadowing effect causes the formation of large voids or cracks and the proportion of multi-hydride (SiHn, n 2) increases. Combined with the scaling theory, the relationship between the shadowing effect and the surface morphologies and microstructures of amorphous silicon thin films is discussed.
-
Keywords:
- shadowing effect /
- mounded surface /
- micro-voids /
- surface morphology evolution
[1] Fang J, Li S L, Xu S Z, Wei C C, Zhao Y, Zhang X D 2013 Acta Phys. Sin. 62 168103 (in Chinese)[方家, 李双亮, 许盛之, 魏长春, 赵颖, 张晓丹 2013 62 168103]
[2] [3] Lu TM, Zhao Y P, Drotar J T, Karabacak T, Wang G C 2003 Mat. Res. Soc. Symp. Proc. 749 3
[4] [5] W. G. J. H. M. van Sark, L. Korte, F. Roca (Eds.) 2012 Physics and Technology of amorphous-Crystalline Heterostructure Silicon solar cells (Berlin, Heidelberg: Springer-Verlag) p44
[6] Tonokura K, Inoue K, Koshi M 2002 J. Non-Cryst. Solids 299-302 25
[7] [8] Karabacak T, Guclu H, Yuksel M 2009 Phys. Rev. B 79 195418
[9] [10] [11] Karunasiri R P U, Bruinsma R, Rudnick J 1989 Phys. Rev. Lett. 62 788
[12] Pelliccione M, Lu TM 2008 Evolution of Thin Film Morphology (New York: Springer) p47
[13] [14] Pelliccione M, Karabacak T, Lu TM 2006 Phys. Rev. Lett. 96 146105
[15] [16] [17] Hasegawaa K, Fujino K, Mukai H, Hayashi K, Sato K, Honjo S, Sato Y, Ishii H, Iwata Y 1996 Appl. Supercond. 4 487
[18] You D J, Choi S K, Han H S, Lee J S, Lim C B 2001 Thin Solid Films 401 229
[19] [20] [21] Liu F Z, Li C W, Zhu M F, Gu J H, Zhou Y Q 2010 Phys. Status Solidi (C) 7 533
[22] [23] Jia Z N, Zhang X D, Liu Y, Wang Y F, Fan J, Liu C C, Zhao Y 2014 Chin. Phys. B 23 046106
[24] Li J, Luo C, Meng Z G, Xiong S Z, Guo H W, Kwok H S 2013 Chin. Phys. B 22 105101
[25] [26] [27] Smets A H M, Matsui T, Kondo M 2008 Appl. Phys. Lett. 92 033506
[28] Peng W B, Liu S Y, Xiao H B, Zhang C S, Shi M J, Zeng X B, Xu Y Y, Kong G L, Yu Y D 2009 Acta Phys. Sin. 58 5716 (in Chinese)[彭文博, 刘石勇, 肖海波, 张长沙, 石明吉, 曾湘波, 徐艳月, 孔光临, 俞育德 2009 58 5716]
[29] [30] Smets A H M, Kessels W M M, Sanden M C M 2003 Appl. Phys. Lett. 82 1547
[31] [32] [33] Kageyama S, Akagawa M, Fujiwara H 2012 J. Non-Cryst. Solids 358 2257
[34] [35] Brodsky M H, Cardona M, Cuomo J J 1977 Phys. Rev. B 16 3556
-
[1] Fang J, Li S L, Xu S Z, Wei C C, Zhao Y, Zhang X D 2013 Acta Phys. Sin. 62 168103 (in Chinese)[方家, 李双亮, 许盛之, 魏长春, 赵颖, 张晓丹 2013 62 168103]
[2] [3] Lu TM, Zhao Y P, Drotar J T, Karabacak T, Wang G C 2003 Mat. Res. Soc. Symp. Proc. 749 3
[4] [5] W. G. J. H. M. van Sark, L. Korte, F. Roca (Eds.) 2012 Physics and Technology of amorphous-Crystalline Heterostructure Silicon solar cells (Berlin, Heidelberg: Springer-Verlag) p44
[6] Tonokura K, Inoue K, Koshi M 2002 J. Non-Cryst. Solids 299-302 25
[7] [8] Karabacak T, Guclu H, Yuksel M 2009 Phys. Rev. B 79 195418
[9] [10] [11] Karunasiri R P U, Bruinsma R, Rudnick J 1989 Phys. Rev. Lett. 62 788
[12] Pelliccione M, Lu TM 2008 Evolution of Thin Film Morphology (New York: Springer) p47
[13] [14] Pelliccione M, Karabacak T, Lu TM 2006 Phys. Rev. Lett. 96 146105
[15] [16] [17] Hasegawaa K, Fujino K, Mukai H, Hayashi K, Sato K, Honjo S, Sato Y, Ishii H, Iwata Y 1996 Appl. Supercond. 4 487
[18] You D J, Choi S K, Han H S, Lee J S, Lim C B 2001 Thin Solid Films 401 229
[19] [20] [21] Liu F Z, Li C W, Zhu M F, Gu J H, Zhou Y Q 2010 Phys. Status Solidi (C) 7 533
[22] [23] Jia Z N, Zhang X D, Liu Y, Wang Y F, Fan J, Liu C C, Zhao Y 2014 Chin. Phys. B 23 046106
[24] Li J, Luo C, Meng Z G, Xiong S Z, Guo H W, Kwok H S 2013 Chin. Phys. B 22 105101
[25] [26] [27] Smets A H M, Matsui T, Kondo M 2008 Appl. Phys. Lett. 92 033506
[28] Peng W B, Liu S Y, Xiao H B, Zhang C S, Shi M J, Zeng X B, Xu Y Y, Kong G L, Yu Y D 2009 Acta Phys. Sin. 58 5716 (in Chinese)[彭文博, 刘石勇, 肖海波, 张长沙, 石明吉, 曾湘波, 徐艳月, 孔光临, 俞育德 2009 58 5716]
[29] [30] Smets A H M, Kessels W M M, Sanden M C M 2003 Appl. Phys. Lett. 82 1547
[31] [32] [33] Kageyama S, Akagawa M, Fujiwara H 2012 J. Non-Cryst. Solids 358 2257
[34] [35] Brodsky M H, Cardona M, Cuomo J J 1977 Phys. Rev. B 16 3556
计量
- 文章访问数: 5743
- PDF下载量: 564
- 被引次数: 0