-
利用溶胶-凝胶法在Si衬底上制备了不同退火温度的Cu:ZnO薄膜. 利用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜和光致发光谱研究了样品的晶格结构、表面形貌、成分及其发光特性. 结果表明:所有样品均具有高度的c轴择优取向,随着退火温度的升高,样品的结晶质量变好,样品的表面都被晶粒覆盖,强而稳定的绿光发射被观察到. 绿光强度随退火温度的升高先增加后减小,发光中心位置不随退火温度的变化而改变,这样的绿光发射强而稳定. XRD和XPS结果表明,随退火温度的升高Cu2+ 还原为Cu+,导致Cu:ZnO薄膜形成的缺陷是VZn,所以绿光发射是由VZn引起的. Cu2+ 还原为Cu+时,Cu:ZnO薄膜中VZn浓度增加,使绿光发射强度增大. 当退火温度超过800℃时,Cu2+的还原能力变差,绿光发射强度减弱.ZnO thin films are prepared by sol-gel method on Si substrates. The structural and optical properties of the films annealed at different temperatures are analyzed by X-ray diffraction (XRD), scanning electron microscopy, X-ray photoelectron spectroscopy and photoluminescence. The results of XRD show that each of all the ZnO thin films has a wurtzite phase and is preferentially oriented along the c-axis direction. The sample annealed at 900℃ exhibits a better crystalline quality. Bright and stable structured green luminescence is achieved from the Cu-doped ZnO thin film. The intensity of the green emission increases significantly after annealing at 800℃, while starts to decrease with further increasing temperature. Green luminescence is correlated with the creation of Zn vacancies. Green emission peaks are found to be dependent on the relative concentration of defect centers. The substitution of Cu2+ by Cu+ will increase concentration of defects in the Cu:ZnO thin film and result in very strong green emission.
-
Keywords:
- Cu:ZnO /
- sol-gel /
- green emission
[1] Liu S H, Hsu H S, Venkataiah G, Qi X, Lin C R, Lee J F, Liang K S, Huang J C A 2010 Appl. Phys. Lett. 96 262504
[2] Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 59 4925]
[3] Lin C A, Tsai D S, Chen C Y, He J H 2011 Nanoscale 3 1195
[4] Dev A, Niepelt R, Richters J P, Ronning C, Voss T 2010 Nanotechnology 21 065709
[5] Huang X H, Tay C B, Zhan Z Y, Zhang C, Zheng L X, Venkatesan T, Chua S J 2011 Cryst. Eng. Commun. 13 7032
[6] Tay Y Y, Tan T T, Boey F, Liang M H, Ye J, Zhao Y, Norby T, Li S 2010 Phys. Chem. Chem. Phys. 12 2373
[7] Xu L H, Zheng G G, Lai M, Pei S X 2014 J. Alloys Compd. 583 560
[8] Das S N, Moon K J, Kar J P, Choi J H, Xiong J J, Lee T I, Myoung J M 2010 Appl. Phys. Lett. 97 022103
[9] Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2007 56 3479]
[10] Wang D D, Xing G Z, Gao M, Yang L L, Yang J H, Wu T 2011 J. Phys. Chem. C 115 22729
[11] Liu Y D, Liang H W, Xu L, Zhao J Z, Bian J M, Luo Y, Liu Y, Li W C, Wu G G, Du G T 2010 J. Appl. Phys. 108 113507
[12] Li F M, Bo L T, Ma S Y, Huang X L, Ma L G, LiuJ, Zhang X L, Yang F C, Zhao Q 2012 Superlattices Microstruct. 51 332
[13] Serhane R, Messaci S A, Lafane S, Khales H, Aouimeur W, Bey A H, Boutkedjirt T 2014 Appl. Sur. Sci. 288 572
[14] Liu A, Liu G X, Shan F K, Zhu H H, Shin B C, Lee W J, Cho C R 2013 Chin. Phys. Lett. 30 127301
[15] Jiang J, Zhu L P, Wu Y Z, Zeng Y J, He H P, Lin J M, Ye Z Z 2012 Mater. Lett. 68 258
[16] Lina M C, Wua M K, Chen M J, Yanga J R, Shiojirid M 2012 Mater. Chem. Phys. 135 88
[17] Cui X Z, Zhang T C, Mei Z X, Liu Z L, Liu Y P, Guo Y, Xue Q K, Du X L 2008 J. Crys. Growth 310 5428
[18] Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M, Guo W R 2014 Chin. Phys. B 23 047805
[19] Li F M, Zhu C T, Man S Y, Sun A M, Song H S, Li X B, Wang X 2013 Mater. Sci. Semicon. Process. 16 1079
[20] Ma L G, Ma S Y, Chen H X, Ai X Q, Huang X L 2011 Appl. Sur. Sci. 257 10036
[21] Peng X, Xu J, Zang H, Wang B, Wang Z 2008 J. Lumin. 128 297
[22] Kulyk B, Sahraoui B, Figà V, Turko B, Rudyk V, Kapustianyk V 2009 J. Alloys. Compd. 481 819
[23] Zhu M W, Xia J H, Hong R J, Abu-Samra H, Huang H, Staedler T, Gong J, Sun C, Jiang X 2008 J. Cryst. Growth 310 816
[24] Kishida S, Tokutaka H, Nakanishi S, Watanabe Y, Fujimoto H, Nishimori K, Ishihara N, Futo W, Torigoe S, Harada H 1989 Jpn. J. Appl. Phys. 28 951
[25] Huang X H, Zhang C, Tay C B, Venkatesan T, Chua S J 2013 Appl. Phys. Lett. 102 111106
[26] Janotti A, van de Walle C G 2009 Rep. Prog. Phys. 72 126501
[27] Shen Q H, Gao Z W, Ding H Y, Zhang G H, Pan N, Wang X P 2012 Acta Phys. Sin. 61 167105 (in Chinese) [沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平 2012 61 167105]
[28] Xu J P, Liu P, Shi S B, Zhang X S, Wang L S, Ren Z R, Ge L, Li L 2012 Appl. Surf. Sci. 258 7118
-
[1] Liu S H, Hsu H S, Venkataiah G, Qi X, Lin C R, Lee J F, Liang K S, Huang J C A 2010 Appl. Phys. Lett. 96 262504
[2] Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 59 4925]
[3] Lin C A, Tsai D S, Chen C Y, He J H 2011 Nanoscale 3 1195
[4] Dev A, Niepelt R, Richters J P, Ronning C, Voss T 2010 Nanotechnology 21 065709
[5] Huang X H, Tay C B, Zhan Z Y, Zhang C, Zheng L X, Venkatesan T, Chua S J 2011 Cryst. Eng. Commun. 13 7032
[6] Tay Y Y, Tan T T, Boey F, Liang M H, Ye J, Zhao Y, Norby T, Li S 2010 Phys. Chem. Chem. Phys. 12 2373
[7] Xu L H, Zheng G G, Lai M, Pei S X 2014 J. Alloys Compd. 583 560
[8] Das S N, Moon K J, Kar J P, Choi J H, Xiong J J, Lee T I, Myoung J M 2010 Appl. Phys. Lett. 97 022103
[9] Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2007 56 3479]
[10] Wang D D, Xing G Z, Gao M, Yang L L, Yang J H, Wu T 2011 J. Phys. Chem. C 115 22729
[11] Liu Y D, Liang H W, Xu L, Zhao J Z, Bian J M, Luo Y, Liu Y, Li W C, Wu G G, Du G T 2010 J. Appl. Phys. 108 113507
[12] Li F M, Bo L T, Ma S Y, Huang X L, Ma L G, LiuJ, Zhang X L, Yang F C, Zhao Q 2012 Superlattices Microstruct. 51 332
[13] Serhane R, Messaci S A, Lafane S, Khales H, Aouimeur W, Bey A H, Boutkedjirt T 2014 Appl. Sur. Sci. 288 572
[14] Liu A, Liu G X, Shan F K, Zhu H H, Shin B C, Lee W J, Cho C R 2013 Chin. Phys. Lett. 30 127301
[15] Jiang J, Zhu L P, Wu Y Z, Zeng Y J, He H P, Lin J M, Ye Z Z 2012 Mater. Lett. 68 258
[16] Lina M C, Wua M K, Chen M J, Yanga J R, Shiojirid M 2012 Mater. Chem. Phys. 135 88
[17] Cui X Z, Zhang T C, Mei Z X, Liu Z L, Liu Y P, Guo Y, Xue Q K, Du X L 2008 J. Crys. Growth 310 5428
[18] Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M, Guo W R 2014 Chin. Phys. B 23 047805
[19] Li F M, Zhu C T, Man S Y, Sun A M, Song H S, Li X B, Wang X 2013 Mater. Sci. Semicon. Process. 16 1079
[20] Ma L G, Ma S Y, Chen H X, Ai X Q, Huang X L 2011 Appl. Sur. Sci. 257 10036
[21] Peng X, Xu J, Zang H, Wang B, Wang Z 2008 J. Lumin. 128 297
[22] Kulyk B, Sahraoui B, Figà V, Turko B, Rudyk V, Kapustianyk V 2009 J. Alloys. Compd. 481 819
[23] Zhu M W, Xia J H, Hong R J, Abu-Samra H, Huang H, Staedler T, Gong J, Sun C, Jiang X 2008 J. Cryst. Growth 310 816
[24] Kishida S, Tokutaka H, Nakanishi S, Watanabe Y, Fujimoto H, Nishimori K, Ishihara N, Futo W, Torigoe S, Harada H 1989 Jpn. J. Appl. Phys. 28 951
[25] Huang X H, Zhang C, Tay C B, Venkatesan T, Chua S J 2013 Appl. Phys. Lett. 102 111106
[26] Janotti A, van de Walle C G 2009 Rep. Prog. Phys. 72 126501
[27] Shen Q H, Gao Z W, Ding H Y, Zhang G H, Pan N, Wang X P 2012 Acta Phys. Sin. 61 167105 (in Chinese) [沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平 2012 61 167105]
[28] Xu J P, Liu P, Shi S B, Zhang X S, Wang L S, Ren Z R, Ge L, Li L 2012 Appl. Surf. Sci. 258 7118
计量
- 文章访问数: 5867
- PDF下载量: 1018
- 被引次数: 0