搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火温度对Cu:ZnO薄膜绿光发射的影响

贾相华 郑友进 尹龙承 黄海亮 姜宏伟 朱瑞华

引用本文:
Citation:

退火温度对Cu:ZnO薄膜绿光发射的影响

贾相华, 郑友进, 尹龙承, 黄海亮, 姜宏伟, 朱瑞华

Influence of annealing on green luminescence from Cu:ZnO thin films

Jia Xiang-Hua, Zheng You-Jin, Yin Long-Cheng, Huang Hai-Liang, Jiang Hong-Wei, Zhu Rui-Hua
PDF
导出引用
  • 利用溶胶-凝胶法在Si衬底上制备了不同退火温度的Cu:ZnO薄膜. 利用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜和光致发光谱研究了样品的晶格结构、表面形貌、成分及其发光特性. 结果表明:所有样品均具有高度的c轴择优取向,随着退火温度的升高,样品的结晶质量变好,样品的表面都被晶粒覆盖,强而稳定的绿光发射被观察到. 绿光强度随退火温度的升高先增加后减小,发光中心位置不随退火温度的变化而改变,这样的绿光发射强而稳定. XRD和XPS结果表明,随退火温度的升高Cu2+ 还原为Cu+,导致Cu:ZnO薄膜形成的缺陷是VZn,所以绿光发射是由VZn引起的. Cu2+ 还原为Cu+时,Cu:ZnO薄膜中VZn浓度增加,使绿光发射强度增大. 当退火温度超过800℃时,Cu2+的还原能力变差,绿光发射强度减弱.
    ZnO thin films are prepared by sol-gel method on Si substrates. The structural and optical properties of the films annealed at different temperatures are analyzed by X-ray diffraction (XRD), scanning electron microscopy, X-ray photoelectron spectroscopy and photoluminescence. The results of XRD show that each of all the ZnO thin films has a wurtzite phase and is preferentially oriented along the c-axis direction. The sample annealed at 900℃ exhibits a better crystalline quality. Bright and stable structured green luminescence is achieved from the Cu-doped ZnO thin film. The intensity of the green emission increases significantly after annealing at 800℃, while starts to decrease with further increasing temperature. Green luminescence is correlated with the creation of Zn vacancies. Green emission peaks are found to be dependent on the relative concentration of defect centers. The substitution of Cu2+ by Cu+ will increase concentration of defects in the Cu:ZnO thin film and result in very strong green emission.
    • 基金项目: 黑龙江省自然科学基金(批准号:E201341)、牡丹江市科技攻关计划(批准号:G2013e1233,G2014f1578)和黑龙江教育厅科研基金(批准号:12521577)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. E201341), the Key Science and Technology Program of Mudanjiang, China (Grant Nos. G2013e1233, G2014f1578), and the Scientific Research Foundation of the Education Bureau of Heilongjiang Province, China (Grant No. 12521577).
    [1]

    Liu S H, Hsu H S, Venkataiah G, Qi X, Lin C R, Lee J F, Liang K S, Huang J C A 2010 Appl. Phys. Lett. 96 262504

    [2]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 59 4925]

    [3]

    Lin C A, Tsai D S, Chen C Y, He J H 2011 Nanoscale 3 1195

    [4]

    Dev A, Niepelt R, Richters J P, Ronning C, Voss T 2010 Nanotechnology 21 065709

    [5]

    Huang X H, Tay C B, Zhan Z Y, Zhang C, Zheng L X, Venkatesan T, Chua S J 2011 Cryst. Eng. Commun. 13 7032

    [6]

    Tay Y Y, Tan T T, Boey F, Liang M H, Ye J, Zhao Y, Norby T, Li S 2010 Phys. Chem. Chem. Phys. 12 2373

    [7]

    Xu L H, Zheng G G, Lai M, Pei S X 2014 J. Alloys Compd. 583 560

    [8]

    Das S N, Moon K J, Kar J P, Choi J H, Xiong J J, Lee T I, Myoung J M 2010 Appl. Phys. Lett. 97 022103

    [9]

    Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2007 56 3479]

    [10]

    Wang D D, Xing G Z, Gao M, Yang L L, Yang J H, Wu T 2011 J. Phys. Chem. C 115 22729

    [11]

    Liu Y D, Liang H W, Xu L, Zhao J Z, Bian J M, Luo Y, Liu Y, Li W C, Wu G G, Du G T 2010 J. Appl. Phys. 108 113507

    [12]

    Li F M, Bo L T, Ma S Y, Huang X L, Ma L G, LiuJ, Zhang X L, Yang F C, Zhao Q 2012 Superlattices Microstruct. 51 332

    [13]

    Serhane R, Messaci S A, Lafane S, Khales H, Aouimeur W, Bey A H, Boutkedjirt T 2014 Appl. Sur. Sci. 288 572

    [14]

    Liu A, Liu G X, Shan F K, Zhu H H, Shin B C, Lee W J, Cho C R 2013 Chin. Phys. Lett. 30 127301

    [15]

    Jiang J, Zhu L P, Wu Y Z, Zeng Y J, He H P, Lin J M, Ye Z Z 2012 Mater. Lett. 68 258

    [16]

    Lina M C, Wua M K, Chen M J, Yanga J R, Shiojirid M 2012 Mater. Chem. Phys. 135 88

    [17]

    Cui X Z, Zhang T C, Mei Z X, Liu Z L, Liu Y P, Guo Y, Xue Q K, Du X L 2008 J. Crys. Growth 310 5428

    [18]

    Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M, Guo W R 2014 Chin. Phys. B 23 047805

    [19]

    Li F M, Zhu C T, Man S Y, Sun A M, Song H S, Li X B, Wang X 2013 Mater. Sci. Semicon. Process. 16 1079

    [20]

    Ma L G, Ma S Y, Chen H X, Ai X Q, Huang X L 2011 Appl. Sur. Sci. 257 10036

    [21]

    Peng X, Xu J, Zang H, Wang B, Wang Z 2008 J. Lumin. 128 297

    [22]

    Kulyk B, Sahraoui B, Figà V, Turko B, Rudyk V, Kapustianyk V 2009 J. Alloys. Compd. 481 819

    [23]

    Zhu M W, Xia J H, Hong R J, Abu-Samra H, Huang H, Staedler T, Gong J, Sun C, Jiang X 2008 J. Cryst. Growth 310 816

    [24]

    Kishida S, Tokutaka H, Nakanishi S, Watanabe Y, Fujimoto H, Nishimori K, Ishihara N, Futo W, Torigoe S, Harada H 1989 Jpn. J. Appl. Phys. 28 951

    [25]

    Huang X H, Zhang C, Tay C B, Venkatesan T, Chua S J 2013 Appl. Phys. Lett. 102 111106

    [26]

    Janotti A, van de Walle C G 2009 Rep. Prog. Phys. 72 126501

    [27]

    Shen Q H, Gao Z W, Ding H Y, Zhang G H, Pan N, Wang X P 2012 Acta Phys. Sin. 61 167105 (in Chinese) [沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平 2012 61 167105]

    [28]

    Xu J P, Liu P, Shi S B, Zhang X S, Wang L S, Ren Z R, Ge L, Li L 2012 Appl. Surf. Sci. 258 7118

  • [1]

    Liu S H, Hsu H S, Venkataiah G, Qi X, Lin C R, Lee J F, Liang K S, Huang J C A 2010 Appl. Phys. Lett. 96 262504

    [2]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 59 4925]

    [3]

    Lin C A, Tsai D S, Chen C Y, He J H 2011 Nanoscale 3 1195

    [4]

    Dev A, Niepelt R, Richters J P, Ronning C, Voss T 2010 Nanotechnology 21 065709

    [5]

    Huang X H, Tay C B, Zhan Z Y, Zhang C, Zheng L X, Venkatesan T, Chua S J 2011 Cryst. Eng. Commun. 13 7032

    [6]

    Tay Y Y, Tan T T, Boey F, Liang M H, Ye J, Zhao Y, Norby T, Li S 2010 Phys. Chem. Chem. Phys. 12 2373

    [7]

    Xu L H, Zheng G G, Lai M, Pei S X 2014 J. Alloys Compd. 583 560

    [8]

    Das S N, Moon K J, Kar J P, Choi J H, Xiong J J, Lee T I, Myoung J M 2010 Appl. Phys. Lett. 97 022103

    [9]

    Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2007 56 3479]

    [10]

    Wang D D, Xing G Z, Gao M, Yang L L, Yang J H, Wu T 2011 J. Phys. Chem. C 115 22729

    [11]

    Liu Y D, Liang H W, Xu L, Zhao J Z, Bian J M, Luo Y, Liu Y, Li W C, Wu G G, Du G T 2010 J. Appl. Phys. 108 113507

    [12]

    Li F M, Bo L T, Ma S Y, Huang X L, Ma L G, LiuJ, Zhang X L, Yang F C, Zhao Q 2012 Superlattices Microstruct. 51 332

    [13]

    Serhane R, Messaci S A, Lafane S, Khales H, Aouimeur W, Bey A H, Boutkedjirt T 2014 Appl. Sur. Sci. 288 572

    [14]

    Liu A, Liu G X, Shan F K, Zhu H H, Shin B C, Lee W J, Cho C R 2013 Chin. Phys. Lett. 30 127301

    [15]

    Jiang J, Zhu L P, Wu Y Z, Zeng Y J, He H P, Lin J M, Ye Z Z 2012 Mater. Lett. 68 258

    [16]

    Lina M C, Wua M K, Chen M J, Yanga J R, Shiojirid M 2012 Mater. Chem. Phys. 135 88

    [17]

    Cui X Z, Zhang T C, Mei Z X, Liu Z L, Liu Y P, Guo Y, Xue Q K, Du X L 2008 J. Crys. Growth 310 5428

    [18]

    Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M, Guo W R 2014 Chin. Phys. B 23 047805

    [19]

    Li F M, Zhu C T, Man S Y, Sun A M, Song H S, Li X B, Wang X 2013 Mater. Sci. Semicon. Process. 16 1079

    [20]

    Ma L G, Ma S Y, Chen H X, Ai X Q, Huang X L 2011 Appl. Sur. Sci. 257 10036

    [21]

    Peng X, Xu J, Zang H, Wang B, Wang Z 2008 J. Lumin. 128 297

    [22]

    Kulyk B, Sahraoui B, Figà V, Turko B, Rudyk V, Kapustianyk V 2009 J. Alloys. Compd. 481 819

    [23]

    Zhu M W, Xia J H, Hong R J, Abu-Samra H, Huang H, Staedler T, Gong J, Sun C, Jiang X 2008 J. Cryst. Growth 310 816

    [24]

    Kishida S, Tokutaka H, Nakanishi S, Watanabe Y, Fujimoto H, Nishimori K, Ishihara N, Futo W, Torigoe S, Harada H 1989 Jpn. J. Appl. Phys. 28 951

    [25]

    Huang X H, Zhang C, Tay C B, Venkatesan T, Chua S J 2013 Appl. Phys. Lett. 102 111106

    [26]

    Janotti A, van de Walle C G 2009 Rep. Prog. Phys. 72 126501

    [27]

    Shen Q H, Gao Z W, Ding H Y, Zhang G H, Pan N, Wang X P 2012 Acta Phys. Sin. 61 167105 (in Chinese) [沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平 2012 61 167105]

    [28]

    Xu J P, Liu P, Shi S B, Zhang X S, Wang L S, Ren Z R, Ge L, Li L 2012 Appl. Surf. Sci. 258 7118

  • [1] 郭昭龙, 赵海新, 赵卫. 纳米ZnO-SiO2自清洁增透薄膜的制备及其性能.  , 2016, 65(6): 064206. doi: 10.7498/aps.65.064206
    [2] 刘义, 张清, 李海金, 李勇, 刘厚通. Sr掺杂钙钛矿型氧化物Y1-xSrxCoO3的溶胶-凝胶制备及电阻率温度关系研究.  , 2013, 62(4): 047202. doi: 10.7498/aps.62.047202
    [3] 庄晓波, 夏海平. 用Z-扫描技术研究卟啉铜偶合TiO2/SiO2有机-无机材料的非线性吸收特性.  , 2012, 61(18): 184213. doi: 10.7498/aps.61.184213
    [4] 吴艳南, 徐明, 吴定才, 董成军, 张佩佩, 纪红萱, 何林. Co,Sn共掺ZnO薄膜结构与光致发光的研究.  , 2011, 60(7): 077505. doi: 10.7498/aps.60.077505
    [5] 李世帅, 张仲, 黄金昭, 冯秀鹏, 刘如喜. In掺杂ZnO薄膜的制备及其白光发射机理.  , 2011, 60(9): 097405. doi: 10.7498/aps.60.097405
    [6] 杨昌虎, 马忠权, 徐飞, 赵磊, 李凤, 何波. 稀土钇、镧掺杂TiO2薄膜的拉曼谱分析.  , 2010, 59(9): 6549-6555. doi: 10.7498/aps.59.6549
    [7] 王德义, 高书霞, 李刚, 赵鸣. 溶胶-凝胶法制备Li-N双掺p型ZnO薄膜的结构、光学和电学性能.  , 2010, 59(5): 3473-3480. doi: 10.7498/aps.59.3473
    [8] 王晓栋, 沈军, 王生钊, 张志华. 椭偏光谱法研究溶胶-凝胶TiO2薄膜的光学常数.  , 2009, 58(11): 8027-8032. doi: 10.7498/aps.58.8027
    [9] 吴定才, 胡志刚, 段满益, 徐禄祥, 刘方舒, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究.  , 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [10] 梁丽萍, 张 磊, 盛永刚, 徐 耀, 吴 东, 孙予罕, 蒋晓东, 魏晓峰. 溶胶-凝胶ZrO2-TiO2高折射率光学膜层的抗激光损伤性能研究.  , 2007, 56(6): 3596-3601. doi: 10.7498/aps.56.3596
    [11] 臧竞存, 田战魁, 刘燕行, 迟 静, 邹玉林, 魏建忠, 叶建萍. 溶胶-凝胶法制备ZnO薄膜的成核-生长和失稳分解研究.  , 2006, 55(3): 1358-1362. doi: 10.7498/aps.55.1358
    [12] 兰 伟, 刘雪芹, 黄春明, 唐国梅, 杨 扬, 王印月. 溶胶凝胶旋转涂敷技术制备ZnO:In薄膜的结构特性.  , 2006, 55(2): 748-752. doi: 10.7498/aps.55.748
    [13] 梁丽萍, 徐 耀, 张 磊, 吴 东, 孙予罕, 李志宏, 吴忠华. 溶胶-凝胶方法制备ZrO2及聚合物掺杂ZrO2单层光学增反射膜.  , 2006, 55(8): 4371-4382. doi: 10.7498/aps.55.4371
    [14] 梁丽萍, 张 磊, 徐 耀, 章 斌, 吴 东, 孙予罕, 蒋晓东, 魏晓峰, 李志宏, 吴忠华. PVP掺杂-ZrO2溶胶-凝胶工艺制备多层激光高反射膜的研究.  , 2006, 55(11): 6175-6184. doi: 10.7498/aps.55.6175
    [15] 陶卫东, 董建峰, 夏海平, 白贵儒, 陆祖康. 微米手性晶粒凝胶玻璃的制备及其消偏振效应.  , 2004, 53(3): 891-894. doi: 10.7498/aps.53.891
    [16] 赵明磊, 王春雷, 王矜奉, 陈洪存, 钟维烈. 溶胶-凝胶法制备的高压电常数(Bi0.5Na0.5)1-xBaxTiO3系无铅压电陶瓷.  , 2004, 53(7): 2357-2362. doi: 10.7498/aps.53.2357
    [17] 何志巍, 甄聪棉, 兰 伟, 王印月. 溶胶-凝胶法制备纳米多孔SiO2薄膜.  , 2003, 52(12): 3130-3134. doi: 10.7498/aps.52.3130
    [18] 赵明磊, 王春雷, 钟维烈, 王矜奉, 陈洪存. 溶胶-凝胶法制备Bi0.5Na0.5TiO3陶瓷及其电学特性.  , 2003, 52(1): 229-232. doi: 10.7498/aps.52.229
    [19] 杨合情, 王喧, 张邦劳, 李永放, 张良莹, 姚熹. 溶胶-凝胶法制备的GeO2-SiO2凝胶玻璃的红光发射.  , 2002, 51(1): 178-182. doi: 10.7498/aps.51.178
    [20] 陶卫东, 夏海平, 白贵儒, 董建峰, 聂秋华. 固体手性材料的研制及其特性测试.  , 2002, 51(3): 685-689. doi: 10.7498/aps.51.685
计量
  • 文章访问数:  5867
  • PDF下载量:  1018
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-21
  • 修回日期:  2014-05-06
  • 刊出日期:  2014-08-05

/

返回文章
返回
Baidu
map