-
运用多体展开理论和量子化学方法–超分子单、双(三重)激发微扰处理耦合簇CCSD(T)方法,首次系统地计算了面心立方固氪在较宽(从晶格平衡位置到体积压缩率超过3倍)区间的两体、 三体和四体相互作用对结合能和物态方程的贡献大小,包括Hartree-Fock 自洽场项和范德瓦耳斯长程关联作用项;并与实验数据进行比较. 结果表明,在考虑到两体、三体、四体相互作用能后,多体展开理论以及CCSD(T)方法对平衡位置结合能测量数据0–130 GPa整个研究区间的实验物态方程数据都做出令人满意的描述.
-
关键词:
- 结合能 /
- CCSD (T)方法 /
- 物态方程 /
- 固氪
The two-, three- and four-body interaction energies in face-centered cubic (fcc) krypton are evaluated using the many-body expansion method and the coupled cluster theory with full single and double excitations plus perturbative treatment of triples, and both self-consistent-field (SCF) Hartree-Fock energy and correlation one are accurately determined in a wide volume range (from 27 to 4 cm3/mol). All different three- and four-atom clusters existing in the first three and two nearest and two neighbor shells of fcc lattice are considered. It is found that the three-body interaction energy is positive at low compression, where the dispersive forces play a dominant role, with increasing the compression the three-body contribution becomes attractive, and the SCF energy overwhelms the dispersive one. At pressures higher than 30 GPa, the four-body contribution becomes important and significantly cancels the over-softening effects of the three-body potential. It shows that the combination of the four-body effects with two- and three-body interactions leads to an excellent agreement with the measurements from the equation of state in the whole experimental range of 0-130 GPa.-
Keywords:
- cohesive energy /
- CCSD (T) /
- equation of state /
- solid krypton
[1] Pepin R O 1991 Icarus 92 2
[2] Jephcoat A P 1998 Nature 393 355
[3] Aziz R A, Slaman M J 1986 Molecul. Phys. 58 679
[4] Loubeyre P 1988 Phys. Rev. B 37 5432
[5] Loubeyre P 1987 Phys. Rev. Lett. 58 1857
[6] Freiman Y A, Tretyak S M 2007 Low Temperat. Phys. 33 545
[7] Qian P, Liu J L, Shen J, Bai L J, Ran Q, Wang Y L 2010 Chin. Phys. B 19 126001
[8] Li Z J, Li J H 2008 Chin. Phys. B 17 2951
[9] Dong C 2006 Chin. Phys. B 15 3005
[10] Schwerdtfeger P, Gaston N, Krawczyk R P, Tonner R, Moyano G E 2006 Phys. Rev. B 73 064112
[11] Slavicek P, Kalus R, Paska P, Odvarkova I, Hobza P, Malijevsky A 2003 J. Chem. Phys. 119 2102
[12] Tao F M 1999 J. Chem. Phys. 111 2407
[13] Hellmann R, Bich E, Vogel E 2008 Molecul. Phys. 106 133
[14] Rosciszewski K, Paulus B, Fulde P, Stoll H 2000 Phys. Rev. B 62 5482
[15] Tian C L, Liu F S, Cai L C, Jing F Q 2006 Acta Phys. Sin. 55 764 (in Chinese) [田春玲, 刘福生, 蔡灵仓, 经福谦 2006 55 764]
[16] Huang K, Han R Q 1988 Solid State Physics (1st Ed.) (Beijing: Higher Education Press) p137 (in Chinese) [黄昆, 韩汝琦 1988 固体物理学 (第1版) (北京: 高等教育出版社) 第137页]
[17] Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M, Montgomery J A 1993 J. Comput. Chem. 14 1347
[18] Tian C L, Wu N, Liu F S, Saxena S K, Zheng X R 2012 J. Chem. Phys. 137 044108
[19] Schwalbe L A, Crawford R K, Chen H H, Aziz R A 1977 J. Chem. Phys. 66 4493
[20] Anderson M S, Swenson A C 1974 J. Phys. Chem. Solids 36 145
[21] Polian A, Besson J M, Grimsditch M, Grosshans A W 1988 Phys. Rev. B 39 1332
-
[1] Pepin R O 1991 Icarus 92 2
[2] Jephcoat A P 1998 Nature 393 355
[3] Aziz R A, Slaman M J 1986 Molecul. Phys. 58 679
[4] Loubeyre P 1988 Phys. Rev. B 37 5432
[5] Loubeyre P 1987 Phys. Rev. Lett. 58 1857
[6] Freiman Y A, Tretyak S M 2007 Low Temperat. Phys. 33 545
[7] Qian P, Liu J L, Shen J, Bai L J, Ran Q, Wang Y L 2010 Chin. Phys. B 19 126001
[8] Li Z J, Li J H 2008 Chin. Phys. B 17 2951
[9] Dong C 2006 Chin. Phys. B 15 3005
[10] Schwerdtfeger P, Gaston N, Krawczyk R P, Tonner R, Moyano G E 2006 Phys. Rev. B 73 064112
[11] Slavicek P, Kalus R, Paska P, Odvarkova I, Hobza P, Malijevsky A 2003 J. Chem. Phys. 119 2102
[12] Tao F M 1999 J. Chem. Phys. 111 2407
[13] Hellmann R, Bich E, Vogel E 2008 Molecul. Phys. 106 133
[14] Rosciszewski K, Paulus B, Fulde P, Stoll H 2000 Phys. Rev. B 62 5482
[15] Tian C L, Liu F S, Cai L C, Jing F Q 2006 Acta Phys. Sin. 55 764 (in Chinese) [田春玲, 刘福生, 蔡灵仓, 经福谦 2006 55 764]
[16] Huang K, Han R Q 1988 Solid State Physics (1st Ed.) (Beijing: Higher Education Press) p137 (in Chinese) [黄昆, 韩汝琦 1988 固体物理学 (第1版) (北京: 高等教育出版社) 第137页]
[17] Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M, Montgomery J A 1993 J. Comput. Chem. 14 1347
[18] Tian C L, Wu N, Liu F S, Saxena S K, Zheng X R 2012 J. Chem. Phys. 137 044108
[19] Schwalbe L A, Crawford R K, Chen H H, Aziz R A 1977 J. Chem. Phys. 66 4493
[20] Anderson M S, Swenson A C 1974 J. Phys. Chem. Solids 36 145
[21] Polian A, Besson J M, Grimsditch M, Grosshans A W 1988 Phys. Rev. B 39 1332
计量
- 文章访问数: 5424
- PDF下载量: 346
- 被引次数: 0