-
通过构建晶体表面-KDP分子界面吸附结构模型, 采用分子动力学和密度泛函计算方法研究KDP分子在(001)和(010)面吸附的物理化学过程, 考察了温度对物理吸附行为的影响. 研究表明: KDP晶体表面的吸附过程和生长习性主要由化学吸附主导, 化学吸附能的计算表明[K-O8]基元在(001)界面的结合能是(010)界面结合能的2.86倍; 在饱和温度附近, [H2PO4]-阴离子在KDP界面的物理结合能随温度的变化呈现振荡特征, 溶液中有较多的离子团簇形成, 溶液变得很不稳定; 当温度从323 K降低至308 K时, 水分子在界面的结合能总体呈下降趋势, 而KDP分子在界面的吸附能总体呈上升趋势, 脱水过程是水分子和[H2PO4]-阴离子在固液界面边界层竞争吸附的结果. 研究结果对确足晶体生长界面动力学过程发展和完善晶体生长理论有重要意义.Through building “surface-molecule” interfacial adsorption structure model, the physical and the chemical absorptions of (001) interface and (010) interface of KDP crystal are studied by using molecular dynamics and density functional theory method, and the effect of temperature on physical absorption behavior is investigated. The result indicates that the absorption process and the growth habit of KDP surface are dominated by the chemical absorption, and the binding energy on (001) surface is 2.86 times that on (010) surface of KDP crystal. Near the saturation temperature, the binding energy between [H2PO4]- anion and crystal surface presents obviously an oscillation characteristic with the temperature varying, and the solution becomes unstable with the formation of anion clusters. With temperature decreasing from 323 K to 308 K, the binding energy of H2O decreases in general, but the binding energy of KDP molecular increases obviously, which indicates the dehydration process results from the competitive absorption between H2O and [H2PO4]-. The results obtained are of significance in identifying the surface kinetics process and developing more sophisticated crystal growth theories.
-
Keywords:
- molecular dynamics /
- double-layer structure model /
- binding energy
[1] Chen J C, Huang Y S, Wei P C 1985 Acta Phys. Sin. 34 377 (in Chinese) [陈金长, 黄依森, 魏培才 1985 34 377]
[2] Wang X D, Li MW, Cao Y C, Liu Y S 2010 J. Synth. Cryst. 39 88 (in Chinese) [王晓丁, 李明伟, 曹亚超, 刘玉姗 2010 人工晶体学报 39 88]
[3] Wang B, Xu X G, Wang S L 2008 J. Synth. Cryst. 37 1042 (in Chinese) [王波, 许心光, 王圣来 2008 人工晶体学报 37 1042]
[4] Zhang K C, Wang X M 1994 Nonlinear Optical Crystal Material Science (2nd Ed.) (Beijing: Science Press) pp 124–133 (in Chinese) [张克从, 王希敏 1994 非线性光学晶体材料科学 (第二版) 北京: 科学出版社) 第124-133页]
[5] Zhong W Z, Yu X L, Luo H, Cheng Z K, Hua S K 1998 Sci. Chin. (Ser. E) 28 320 (in Chinese) [仲维卓, 于锡铃, 罗豪, 程振翔, 华素坤 1998 中国科学 (E辑) 28 320]
[6] Lu G W, Xia H R, Sun D L, Zheng W Q, Sun X, Gao Z S, Wang J Y 2001 Phys. Status Solidi 188 1071
[7] Stack A G, Rustad J R, DeYoreo J J, Land T A, Casey W H 2004 J. Phys. Chem. B 108 18284
[8] Asakuma Y, Li Q, Ang H M, Tade M, Maeda K, Fukui K 2008 Appl. Surf. Sci. 254 4524
[9] Ren X, Xu D L, Xue D F 2008 J. Cryst. Growth 310 2005
[10] Diao L C, Huang B R 2003 J. Synth. Cryst. 32 631 (in Chinese) [刁立臣, 黄炳荣 2003 人工晶体学报 32 631]
[11] Teng B, Zhong D G, Yu Z H, Li X B, Wang D J, Wang Q G, Zhao Y H, Chen S O, Yu T 2009 J. Cryst. Growth 311 716
[12] Zhang X F, Lu G W, Wen X M, Yang H 2009 Appl. Surf. Sci. 255 6493
[13] Mullin J W 1997 Crystallization (3rd Ed.) (Oxford: Butterworth- Heinemann) p438
[14] Zhou G G, Lu G W, Yu Y H, Zhang W S, Zhao K 2010 Chin. J. Lasers 37 1342 (in Chinese) [周广刚, 卢贵武, 于迎辉, 张万松, 赵昆 2010 中国激光 37 1342]
[15] Xu D L, Xue D F 2006 J. Cryst. Growth 286 108
[16] Lu G W, Xia H R, Zhang S Q, Sun X, Gao Z S, Wang J Y 2001 J. Cryst. Growth 233 730
[17] Lu G W, Sun X 2002 Cryst. Res. Technol. 37 93
[18] Wang K, Lu G W, Zhou G G, Yang H W, Su D D 2010 Chin. J. Chem. Phys. 23 160
-
[1] Chen J C, Huang Y S, Wei P C 1985 Acta Phys. Sin. 34 377 (in Chinese) [陈金长, 黄依森, 魏培才 1985 34 377]
[2] Wang X D, Li MW, Cao Y C, Liu Y S 2010 J. Synth. Cryst. 39 88 (in Chinese) [王晓丁, 李明伟, 曹亚超, 刘玉姗 2010 人工晶体学报 39 88]
[3] Wang B, Xu X G, Wang S L 2008 J. Synth. Cryst. 37 1042 (in Chinese) [王波, 许心光, 王圣来 2008 人工晶体学报 37 1042]
[4] Zhang K C, Wang X M 1994 Nonlinear Optical Crystal Material Science (2nd Ed.) (Beijing: Science Press) pp 124–133 (in Chinese) [张克从, 王希敏 1994 非线性光学晶体材料科学 (第二版) 北京: 科学出版社) 第124-133页]
[5] Zhong W Z, Yu X L, Luo H, Cheng Z K, Hua S K 1998 Sci. Chin. (Ser. E) 28 320 (in Chinese) [仲维卓, 于锡铃, 罗豪, 程振翔, 华素坤 1998 中国科学 (E辑) 28 320]
[6] Lu G W, Xia H R, Sun D L, Zheng W Q, Sun X, Gao Z S, Wang J Y 2001 Phys. Status Solidi 188 1071
[7] Stack A G, Rustad J R, DeYoreo J J, Land T A, Casey W H 2004 J. Phys. Chem. B 108 18284
[8] Asakuma Y, Li Q, Ang H M, Tade M, Maeda K, Fukui K 2008 Appl. Surf. Sci. 254 4524
[9] Ren X, Xu D L, Xue D F 2008 J. Cryst. Growth 310 2005
[10] Diao L C, Huang B R 2003 J. Synth. Cryst. 32 631 (in Chinese) [刁立臣, 黄炳荣 2003 人工晶体学报 32 631]
[11] Teng B, Zhong D G, Yu Z H, Li X B, Wang D J, Wang Q G, Zhao Y H, Chen S O, Yu T 2009 J. Cryst. Growth 311 716
[12] Zhang X F, Lu G W, Wen X M, Yang H 2009 Appl. Surf. Sci. 255 6493
[13] Mullin J W 1997 Crystallization (3rd Ed.) (Oxford: Butterworth- Heinemann) p438
[14] Zhou G G, Lu G W, Yu Y H, Zhang W S, Zhao K 2010 Chin. J. Lasers 37 1342 (in Chinese) [周广刚, 卢贵武, 于迎辉, 张万松, 赵昆 2010 中国激光 37 1342]
[15] Xu D L, Xue D F 2006 J. Cryst. Growth 286 108
[16] Lu G W, Xia H R, Zhang S Q, Sun X, Gao Z S, Wang J Y 2001 J. Cryst. Growth 233 730
[17] Lu G W, Sun X 2002 Cryst. Res. Technol. 37 93
[18] Wang K, Lu G W, Zhou G G, Yang H W, Su D D 2010 Chin. J. Chem. Phys. 23 160
计量
- 文章访问数: 7440
- PDF下载量: 499
- 被引次数: 0