搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种无线传感器网络中的混沌信号重构算法

黄锦旺 李广明 冯久超 晋建秀

引用本文:
Citation:

一种无线传感器网络中的混沌信号重构算法

黄锦旺, 李广明, 冯久超, 晋建秀

A chaotic signal reconstruction algorithm in wireless sensor networks

Huang Jin-Wang, Li Guang-Ming, Feng Jiu-Chao, Jin Jian-Xiu
PDF
导出引用
  • 将无线传感器网络节点观测区域中的一个混沌信号发送到融合中心,进行信号重构. 由于节点的通信带宽受限,信号传输之前需要进行量化,给信号带来量化噪声,使得信号重构工作变得更为棘手. 本文提出用平方根容积卡尔曼滤波器对融合中心收集的信号进行重构. 首先估计观测信号的概率密度函数,使用最优量化器量化观测信号,在有限的量化比特数下,取得最优的信号量化性能. 平方根容积卡尔曼滤波器相对无先导卡尔曼算法具有较少的求容积分点,因此具有计算量小的优点,同时迭代过程采用传递误差矩阵的平方根矩阵,保证迭代过程的稳定性和提高数据估计精度. 仿真结果表明,该算法能够有效和快速地重构观测信号,并且比基于无先导卡尔曼滤波的算法更快.
    A chaotic signal in an observation area of network nodes is sent to a fusion center for reconstruction. As the communication bandwidth is limited, the signal must be quantified before sending to the fusion center, which will add quantization noise to the observed signal, which makes the signal reconstruction more difficult. A chaotic signal reconstruction algorithm is proposed in this paper based on square-root cubature Kalman filter. Firstly the probability density function of the observed signal is estimated, and then the optimal quantizer is used to quantify the observed signal. Under the limited budget of quantization bits, the best performance can be achieved. Compared with the unscented Kalman filter counterpart, our algorithm has fewer cubature points and has the merit of small computation load; meanwhile, it uses the square root of error variance for iteration, this will be more stable and accurate when iterating for parameter estimation. Simulation results show that the algorithm can reconstruct the observed signal quickly and effectively, with consuming less computation time and being more accurate than the one based on unscented Kalman filter.
    • 基金项目: 国家自然科学基金(批准号:60872123,61101014)、广东省高等学校高层次人才项目基金(批准号:N9101070)和中央高校基本科研基金(批准号:2012ZM0025)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60872123, 61101014), the Fund for Higher-level Talent in Guangdong Province, China (Grant No. N9101070), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2012ZM0025).
    [1]

    Zhang C, Fei S M, Zhou X P 2012 Chin. Phys. B 21 120101

    [2]

    Qi H, Wang F B, Deng H 2013 Acta Phys. Sin. 62 104301 (in Chinese) [祁浩, 王福豹, 邓宏 2013 62 104301]

    [3]

    Liu H R, Yin W X, Han T, Dong M R 2014 Acta Phys. Sin. 63 040509 (in Chinese) [刘浩然, 尹文晓, 韩涛, 董明如 2014 63 040509]

    [4]

    Liu X L, Li Z, Hu Y S 2013 Acta Phys. Sin. 62 070201 (in Chinese) [刘向丽, 李赞, 胡易俗 2013 62 070201]

    [5]

    de Senneville B D, Roujol S, Hey S, Moonen C, Ries M 2013 IEEE Trans. Medical Imaging 32 711

    [6]

    Feng J C 2012 Chaotic Signal and Information Process (Beijing: Tsinghua University Press) p101 (in Chinese) [冯久超 2012 混沌信号与信息处理 (北京: 清华大学出版社)第101页]

    [7]

    Feng J C, Tse C K, Lau F C M 2003 IEEE Trans. Circuits and Systems-I 50 954

    [8]

    Ribeiro A, Giannakis G B, Roumeliotis S 2006 IEEE Trans. Signal Process. 54 4782

    [9]

    Chen H B, Feng J C 2010 J. Southwest Univ. (Natural Science Edition) 32 124 (in Chinese) [陈宏滨, 冯久超 2010 西南大学学报 (自然科学版) 32 124]

    [10]

    Roseveare N, Natarajan B 2012 IEEE Trans. Aerosp. Electron. Syst. 48 3494

    [11]

    Chandra K P B, Gu D W, Postlethwaite I 2013 IEEE Sensors J. 13 750

    [12]

    Wang S Y, Feng J C 2012 Acta Phys. Sin. 61 170508 (in Chinese) [王世元, 冯久超 2012 61 170508]

    [13]

    Zhou J, Liu Y A, Wu F, Zhang H G, Zu Y X 2011 Acta Phys. Sin. 60 090504 (in Chinese) [周杰, 刘元安, 吴帆, 张洪光, 俎云霄 2011 60 090504]

    [14]

    Walpole R E, Myers R H, Myers S L, Ye K 2012 Probability & Statistics for Engineers & Scientists (9th Ed.) (Boston: Pearson Education Inc.) pp84-86

    [15]

    Maaref A, Aissa S 2009 IEEE Trans. Commun. 57 214

    [16]

    Shi J, Yang D S, Shi S G 2011 Acta Phys. Sin. 60 064301 (in Chinese) [时洁, 杨德森, 时胜国 2011 60 064301]

    [17]

    Yu X, Wang H Q, Yang E H 2010 IEEE Trans. Inform. Theory 56 5796

    [18]

    Bianchi P, Jakubowicz J 2013 IEEE Trans. Signal Process. 61 3119

    [19]

    Cui S, Xiao J J, Goldsmith A J, Luo Z Q, Poor H V 2007 IEEE Trans. Signal Process. 55 4683

    [20]

    Chen H B, Feng J C, Fang Y 2008 Chin.Phys.Lett. 25 405

    [21]

    Yu S M, Yu Z D 2008 Acta Phys. Sin. 57 6859 (in Chinese) [禹思敏, 禹之鼎 2008 57 6859]

    [22]

    Gao G R, Liu Y P, Pan Q 2012 Acta Phys. Sin. 61 139701 (in Chinese) [高国荣, 刘艳萍, 潘琼 2012 61 139701]

  • [1]

    Zhang C, Fei S M, Zhou X P 2012 Chin. Phys. B 21 120101

    [2]

    Qi H, Wang F B, Deng H 2013 Acta Phys. Sin. 62 104301 (in Chinese) [祁浩, 王福豹, 邓宏 2013 62 104301]

    [3]

    Liu H R, Yin W X, Han T, Dong M R 2014 Acta Phys. Sin. 63 040509 (in Chinese) [刘浩然, 尹文晓, 韩涛, 董明如 2014 63 040509]

    [4]

    Liu X L, Li Z, Hu Y S 2013 Acta Phys. Sin. 62 070201 (in Chinese) [刘向丽, 李赞, 胡易俗 2013 62 070201]

    [5]

    de Senneville B D, Roujol S, Hey S, Moonen C, Ries M 2013 IEEE Trans. Medical Imaging 32 711

    [6]

    Feng J C 2012 Chaotic Signal and Information Process (Beijing: Tsinghua University Press) p101 (in Chinese) [冯久超 2012 混沌信号与信息处理 (北京: 清华大学出版社)第101页]

    [7]

    Feng J C, Tse C K, Lau F C M 2003 IEEE Trans. Circuits and Systems-I 50 954

    [8]

    Ribeiro A, Giannakis G B, Roumeliotis S 2006 IEEE Trans. Signal Process. 54 4782

    [9]

    Chen H B, Feng J C 2010 J. Southwest Univ. (Natural Science Edition) 32 124 (in Chinese) [陈宏滨, 冯久超 2010 西南大学学报 (自然科学版) 32 124]

    [10]

    Roseveare N, Natarajan B 2012 IEEE Trans. Aerosp. Electron. Syst. 48 3494

    [11]

    Chandra K P B, Gu D W, Postlethwaite I 2013 IEEE Sensors J. 13 750

    [12]

    Wang S Y, Feng J C 2012 Acta Phys. Sin. 61 170508 (in Chinese) [王世元, 冯久超 2012 61 170508]

    [13]

    Zhou J, Liu Y A, Wu F, Zhang H G, Zu Y X 2011 Acta Phys. Sin. 60 090504 (in Chinese) [周杰, 刘元安, 吴帆, 张洪光, 俎云霄 2011 60 090504]

    [14]

    Walpole R E, Myers R H, Myers S L, Ye K 2012 Probability & Statistics for Engineers & Scientists (9th Ed.) (Boston: Pearson Education Inc.) pp84-86

    [15]

    Maaref A, Aissa S 2009 IEEE Trans. Commun. 57 214

    [16]

    Shi J, Yang D S, Shi S G 2011 Acta Phys. Sin. 60 064301 (in Chinese) [时洁, 杨德森, 时胜国 2011 60 064301]

    [17]

    Yu X, Wang H Q, Yang E H 2010 IEEE Trans. Inform. Theory 56 5796

    [18]

    Bianchi P, Jakubowicz J 2013 IEEE Trans. Signal Process. 61 3119

    [19]

    Cui S, Xiao J J, Goldsmith A J, Luo Z Q, Poor H V 2007 IEEE Trans. Signal Process. 55 4683

    [20]

    Chen H B, Feng J C, Fang Y 2008 Chin.Phys.Lett. 25 405

    [21]

    Yu S M, Yu Z D 2008 Acta Phys. Sin. 57 6859 (in Chinese) [禹思敏, 禹之鼎 2008 57 6859]

    [22]

    Gao G R, Liu Y P, Pan Q 2012 Acta Phys. Sin. 61 139701 (in Chinese) [高国荣, 刘艳萍, 潘琼 2012 61 139701]

  • [1] 任子良, 秦勇, 黄锦旺, 赵智, 冯久超. 基于广义似然比判决的混沌信号重构方法.  , 2017, 66(4): 040503. doi: 10.7498/aps.66.040503
    [2] 陈越, 刘雄英, 吴中堂, 范艺, 任子良, 冯久超. 受污染混沌信号的协同滤波降噪.  , 2017, 66(21): 210501. doi: 10.7498/aps.66.210501
    [3] 李广明, 胡志辉. 基于人工蜂群算法的混沌信号盲提取.  , 2016, 65(23): 230501. doi: 10.7498/aps.65.230501
    [4] 范展, 梁国龙, 付进, 王燕. 基于信号子空间重构的鲁棒子区域Frost波束形成.  , 2015, 64(5): 054303. doi: 10.7498/aps.64.054303
    [5] 王路, 徐江荣. 两相湍流统一色噪声法概率密度函数模型.  , 2015, 64(5): 054704. doi: 10.7498/aps.64.054704
    [6] 郭静波, 李佳文. 二进制信号的混沌压缩测量与重构.  , 2015, 64(19): 198401. doi: 10.7498/aps.64.198401
    [7] 陈越, 吕善翔, 王梦蛟, 冯久超. 一种基于人工蜂群算法的混沌信号盲分离方法.  , 2015, 64(9): 090501. doi: 10.7498/aps.64.090501
    [8] 李广明, 吕善翔. 混沌信号的压缩感知去噪.  , 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [9] 康荣宗, 田鹏武, 于宏毅. 一种基于选择性测量的自适应压缩感知方法.  , 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [10] 杨东东, 马红光, 徐东辉, 冯晓伟. 单输入单输出系统故障检测中匹配混沌激励的设计.  , 2014, 63(12): 120508. doi: 10.7498/aps.63.120508
    [11] 杨恒占, 钱富才, 高韵, 谢国. 随机系统的概率密度函数形状调节.  , 2014, 63(24): 240508. doi: 10.7498/aps.63.240508
    [12] 黄锦旺, 冯久超, 吕善翔. 混沌信号在无线传感器网络中的盲分离.  , 2014, 63(5): 050502. doi: 10.7498/aps.63.050502
    [13] 戈阳祯, 米建春. 圆柱热尾流中温度的概率密度函数.  , 2013, 62(2): 024702. doi: 10.7498/aps.62.024702
    [14] 王文波, 张晓东, 汪祥莉. 基于独立成分分析和经验模态分解的混沌信号降噪.  , 2013, 62(5): 050201. doi: 10.7498/aps.62.050201
    [15] 行鸿彦, 程艳燕, 徐伟. 基于广义窗函数和最小二乘支持向量机的混沌背景下微弱信号检测.  , 2012, 61(10): 100506. doi: 10.7498/aps.61.100506
    [16] 王世元, 冯久超. 一种新的参数估计方法及其在混沌信号盲分离中的应用.  , 2012, 61(17): 170508. doi: 10.7498/aps.61.170508
    [17] 王国光, 王丹, 何丽桥. 混沌中信号的投影滤波.  , 2010, 59(5): 3049-3056. doi: 10.7498/aps.59.3049
    [18] 游荣义, 陈 忠, 徐慎初, 吴伯僖. 基于小波变换的混沌信号相空间重构研究.  , 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
    [19] 汪芙平, 王赞基, 郭静波. 混沌背景下信号的盲分离.  , 2002, 51(3): 474-481. doi: 10.7498/aps.51.474
    [20] 汪芙平, 郭静波, 王赞基, 萧达川, 李茂堂. 强混沌干扰中的谐波信号提取.  , 2001, 50(6): 1019-1023. doi: 10.7498/aps.50.1019
计量
  • 文章访问数:  5913
  • PDF下载量:  545
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-13
  • 修回日期:  2014-03-21
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map