搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层MoS2分子掺杂的第一性原理研究

刘俊 梁培 舒海波 沈涛 邢凇 吴琼

引用本文:
Citation:

单层MoS2分子掺杂的第一性原理研究

刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼

First principles study on molecule doping in MoS2 monolayer

Liu Jun, Liang Pei, Shu Hai-Bo, Shen Tao, Xing Song, Wu Qiong
PDF
导出引用
  • 基于密度泛函理论的第一性原理平面波赝势方法的计算,研究了通过吸附不同有机分子对单层MoS2进行化学掺杂. 计算结果表明有机分子与MoS2单层衬底间的相互作用主要是范德瓦尔斯作用力. 吸附不同有机分子的单层MoS2结构均表现出间接带隙的特征,还表明吸附TTF分子的单层MoS2结构表现出n型半导体的特质,而吸附TCNQ,TCNE两种分子的单层MoS2结构均表现出p型半导体的性质,这些结果表明可以通过改变吸附的分子来实现对单层MoS2的掺杂类型的调控. 本文的研究结果将对单层MoS2在晶体管中的应用提供理论基础和指导.
    The chemical doping of organic molecules adsorbed on MoS2 monolayers are systematically studied by using plane-wave pseudo-potential method based on the density functional theory. Our results indicate that the interaction between organic molecules and the MoS2 monolayer substrate is of van der Waals' type of force. Structure of monolayer MoS2 which adsorbs different organic molecules, exhibits indirect bandgap characteristics, and the energy band structure of monolayer MoS2 which adsorbs TTF molecules exhibits n-type conducting characteristics. However, the structures of monolayer MoS2 which adsorbs TCNQ or TCNE molecules would exhibit p-type conductivity characteristics. Thus, the results indicate that the doping type of molecules in monolayer MoS2 can be regulated by adsorbing different molecules. Results of this study may provide a theoretical basis for single-layer MoS2 transistor and guidance for it in the application.
    • 基金项目: 国家自然科学基金(批准号:61006051,61177050),浙江省大学生科技创新活动计划(批准号:2013R409016)和浙江省科技厅公益技术应用研究(批准号:2013C31068)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61006051, 61177050), the College students in Zhejiang Province Science and Technology Innovation Activities Plan, China (Grant No. 2013R409016), and the Science and Technology Department of Zhejiang Province Public Interest Research Technology, China (Grant No. 2013C31068).
    [1]

    Ahn H S, Kim J M, Park C, Jang J W, Lee J S, Kim H, Kaviany M, Kim M H 2013 Sci. Rep. 3 1960

    [2]

    Ai W, Xie L H, Du Z Z, Zeng Z Y, Liu J Q, Zhang H, Huang Y H, Huang W, Yu T 2013 Sci. Rep. 3 2341

    [3]

    Allain A, Han Z, Bouchiat V 2012 Nat. Mater. 11 590

    [4]

    Ataca C, Şahin H, Ciraci S 2012 J Phys. Chem. C 116 8983

    [5]

    Gong J 2012 Chem. Rev. 112 2987

    [6]

    Peng Q, Crean J, Dearden A K, Huang C, Wen X, Bordas S P A, De S 2013 Mod. Phys. Lett. B 27 1330017

    [7]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. rev. 113 3766

    [8]

    Kong D, Wang H, Cha J J, Pasta M, Koski K J, Yao J, Cui Y 2013 Nano lett. 13 1341

    [9]

    Matte H S S R, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R 2010 Angew. Chem. Int. Edit. 49 4059

    [10]

    Wu M S, Xu B, Liu G, OuYang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]

    [11]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674

    [12]

    Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102 (in Chinese) [曹娟, 崔磊, 潘靖 2013 62 187102]

    [13]

    Miranda D A, Cartoixa X, Cruz I M, Rurali R 2010 Nano Lett. 10 3590

    [14]

    Cheng J, Wang W L, Mosallaei H, Kaxiras E 2013 Nano Lett. 14 50

    [15]

    Coletti C, Forti S, Principi A, Emtsev K V, Zakharov A A, Daniels K M, Daas B K, Chandrashekhar M V S, Ouisse T, Chaussende D, MacDonald A H, Polini M, Starke U 2013 Phys. Rev. B 88 155439

    [16]

    Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335

    [17]

    Mouri S, Miyauchi Y, Matsuda K 2013 Nano Lett. 13 5944

    [18]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [19]

    Wu Q, Liu J, Dong Q M Liu Y, Liang P, Shu H B 2014 Acta Phys. Sin. 63 067101 (in Chinese) [吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波 2014 63 067101]

    [20]

    Porezag D, Pederson M R 1999 Phys. Rev. A 60 2840

    [21]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [22]

    Rovira C 2004 Chem. Rev. 104 5289

    [23]

    Metzger R M 1999 Accounts Chem. Res. 32 950

    [24]

    Liang P, Liu Y, Wang L, Wu K, Dong Q M, Li X Y 2012 Acta Phys. Sin. 61 153102 (in Chinese) [梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳 2012 61 153102]

    [25]

    Pan H, Zhang Y W 2012 J. Mater. Chem. 22 7280

    [26]

    Tang Q, Zhou Z, Chen Z 2011 J. Phys. Chem. C 115 18531

    [27]

    Xu Y, Hofmann O T, Schlesinger R, Winkler S, Frisch J, Niederhausen J, Vollmer A, Blumstengel S, Henneberger F, Koch N, Rinke P, Scheffler M 2013 Phys. Rev. Lett. 111 226802

  • [1]

    Ahn H S, Kim J M, Park C, Jang J W, Lee J S, Kim H, Kaviany M, Kim M H 2013 Sci. Rep. 3 1960

    [2]

    Ai W, Xie L H, Du Z Z, Zeng Z Y, Liu J Q, Zhang H, Huang Y H, Huang W, Yu T 2013 Sci. Rep. 3 2341

    [3]

    Allain A, Han Z, Bouchiat V 2012 Nat. Mater. 11 590

    [4]

    Ataca C, Şahin H, Ciraci S 2012 J Phys. Chem. C 116 8983

    [5]

    Gong J 2012 Chem. Rev. 112 2987

    [6]

    Peng Q, Crean J, Dearden A K, Huang C, Wen X, Bordas S P A, De S 2013 Mod. Phys. Lett. B 27 1330017

    [7]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. rev. 113 3766

    [8]

    Kong D, Wang H, Cha J J, Pasta M, Koski K J, Yao J, Cui Y 2013 Nano lett. 13 1341

    [9]

    Matte H S S R, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R 2010 Angew. Chem. Int. Edit. 49 4059

    [10]

    Wu M S, Xu B, Liu G, OuYang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]

    [11]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674

    [12]

    Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102 (in Chinese) [曹娟, 崔磊, 潘靖 2013 62 187102]

    [13]

    Miranda D A, Cartoixa X, Cruz I M, Rurali R 2010 Nano Lett. 10 3590

    [14]

    Cheng J, Wang W L, Mosallaei H, Kaxiras E 2013 Nano Lett. 14 50

    [15]

    Coletti C, Forti S, Principi A, Emtsev K V, Zakharov A A, Daniels K M, Daas B K, Chandrashekhar M V S, Ouisse T, Chaussende D, MacDonald A H, Polini M, Starke U 2013 Phys. Rev. B 88 155439

    [16]

    Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335

    [17]

    Mouri S, Miyauchi Y, Matsuda K 2013 Nano Lett. 13 5944

    [18]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [19]

    Wu Q, Liu J, Dong Q M Liu Y, Liang P, Shu H B 2014 Acta Phys. Sin. 63 067101 (in Chinese) [吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波 2014 63 067101]

    [20]

    Porezag D, Pederson M R 1999 Phys. Rev. A 60 2840

    [21]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [22]

    Rovira C 2004 Chem. Rev. 104 5289

    [23]

    Metzger R M 1999 Accounts Chem. Res. 32 950

    [24]

    Liang P, Liu Y, Wang L, Wu K, Dong Q M, Li X Y 2012 Acta Phys. Sin. 61 153102 (in Chinese) [梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳 2012 61 153102]

    [25]

    Pan H, Zhang Y W 2012 J. Mater. Chem. 22 7280

    [26]

    Tang Q, Zhou Z, Chen Z 2011 J. Phys. Chem. C 115 18531

    [27]

    Xu Y, Hofmann O T, Schlesinger R, Winkler S, Frisch J, Niederhausen J, Vollmer A, Blumstengel S, Henneberger F, Koch N, Rinke P, Scheffler M 2013 Phys. Rev. Lett. 111 226802

  • [1] 董肖. P掺杂LiNH2团簇与LiH反应机理的密度泛函理论研究及一种新储放氢机制.  , 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [2] 肖美霞, 冷浩, 宋海洋, 王磊, 姚婷珍, 何成. 有机分子吸附和衬底调控锗烯的电子结构.  , 2021, 70(6): 063101. doi: 10.7498/aps.70.20201657
    [3] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究.  , 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [4] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱.  , 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [5] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究.  , 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [6] 陶泽华, 董海明. MoS2电子屏蔽长度和等离激元.  , 2017, 66(24): 247701. doi: 10.7498/aps.66.247701
    [7] 陶鹏程, 黄燕, 周孝好, 陈效双, 陆卫. 掺杂对金属-MoS2界面性质调制的第一性原理研究.  , 2017, 66(11): 118201. doi: 10.7498/aps.66.118201
    [8] 刘秀英, 李晓凤, 于景新, 李晓东. Pd负载共价有机骨架COF-108上氢溢流机理的密度泛函理论研究.  , 2016, 65(15): 157302. doi: 10.7498/aps.65.157302
    [9] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算.  , 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [10] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究.  , 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [11] 张凤春, 李春福, 张丛雷, 冉曾令. H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究.  , 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [12] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究.  , 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [13] 黄平, 杨春. TiO2分子在GaN(0001)表面吸附的理论研究.  , 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [14] 范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐. 水分子链受限于单壁碳纳米管结构的密度泛函理论研究.  , 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [15] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究.  , 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [16] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究.  , 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [18] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究.  , 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [19] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究.  , 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [20] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究.  , 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
计量
  • 文章访问数:  7634
  • PDF下载量:  2285
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-25
  • 修回日期:  2014-02-27
  • 刊出日期:  2014-06-05

/

返回文章
返回
Baidu
map