搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二进制偏移载波调制的零相关窗水声同步技术研究

孙宗鑫 于洋 周锋 刘凇佐 乔钢

引用本文:
Citation:

二进制偏移载波调制的零相关窗水声同步技术研究

孙宗鑫, 于洋, 周锋, 刘凇佐, 乔钢

Underwater acoustic synchronization telemetry research based on binary offset carrier modulated signal with zero correlation window

Sun Zong-Xin, Yu Yang, Zhou Feng, Liu Song-Zuo, Qiao Gang
PDF
导出引用
  • 针对线性调频信号同步相关的旁瓣、m序列扩频同步的序列自噪声和二进制相移键控调制信号在主瓣周围一个码片范围内存在较强烈的旁瓣三个问题,提出了一种基于二进制偏移载波(BOC)调制信号的无干扰窗水声同步方式. 利用互补序列的非周期自相关函数之和为零的特殊性质,实现了在主瓣周围一个码片范围外,零相关窗范围内的无干扰窗. 使用BOC(1,1)方式对信号进行亚载波调制,以减少主瓣周围一个码片范围内的旁瓣. 对单通道信号和双通道信号的零相关窗形式都进行了设计,通过仿真和实验验证了BOC零相关窗方法在水声系统的同步、信道测量和估计中的有效性.
    Aiming at the problem that synchronized correlation of linear frequency synchronization of m sequence possesses self noise and there are strong side lobes in a code range besides main lobe, in this paper we propose a new underwater acoustic synchronization scheme based on binary offset carrier (BOC) modulated signal with no interference windows which employs the property that the sum of aperiodic auto correlation function is 0 to realize no interference window between the range of one code and zero inference window and utilizes BOC (1, 1) to modulate signal with sub-carrier to mitigate side lobes in one code range besides main lobe. The schemes are designed for both single and couple channel signal, and the validity of underwater acoustic synchronization, channel measurement and estimation are testified through simulation and experiments.
    • 基金项目: 国家高技术研究发展计划(批准号:2009AA093601-2)、国防基础科学研究计划(批准号:B2420110007)、水声技术重点实验室基金(批准号:9140C200801110C2004)和国家自然科学基金(批准号:11304056)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA093601-2), the National Defense Basic Scientific Research Program of China (Grant No. B2420110007), the Foundation of Science and Technology on Underwater Acoustic Laboratory, China (Grant No. 9140C200801110C2004), and the National Natural Science Foundation of China (Grant No. 11304056).
    [1]

    Stojanovic M, Preisig J 2009 IEEE Commun. Mag. 47 84

    [2]

    Kilfoyle D B, Baggerroer A B 2000 IEEE J. Ocean Eng. 25 1

    [3]

    Yu Y, Zhou F, Qiao G 2012 Acta Phys. Sin. 61 234301 (in Chinese) [于洋, 周锋, 乔钢 2012 61 234301]

    [4]

    He C B, Huang J G, Han J, Zhang Q F 2009 Acta Phys. Sin. 58 8379 (in Chinese) [何成兵, 黄建国, 韩晶, 张群飞 2009 58 8379]

    [5]

    Yin J W, Hui J Y, Wang Y L, Hui J 2007 Acta Phys. Sin. 56 5915 (in Chinese) [殷敬伟, 惠俊英, 王逸林, 慧娟 2007 56 5915]

    [6]

    Wang N, Liu J Z 2002 Chin. Phys. 11 456

    [7]

    Duan R, Yang K D, Ma Y L, Lei B 2012 Chin. Phys. B 21 124301

    [8]

    Sarwate D S 1979 IEEE Trans. Inform. Theory 25 720

    [9]

    Welch L R 1974 IEEE Trans. Inform. Theory 20 397

    [10]

    Levenshtein V I 1996 Proceedings of IEEE 4th International Symposium On Spread Spectrum Techniques and Applications (Vol. 2) (Mainz: IEEE) p657

    [11]

    Stanczak S, Boche H, Haardt M 2001 Proceedings of IEEE Global Communications Conference (Vol. 1) (San Antonic: IEEE) p589

    [12]

    Pott A, Bradley S P 1995 IEEE Trans. Inform. Theory 41 301

    [13]

    Wolfmann J 1992 IEEE Trans. Inform. Theory 38 1412

    [14]

    Popvia B M 1995 IEEE Electron. Lett. 31 944

    [15]

    Fishman P A, Betz J W 2000 Proceedings of the Institute of Navigation's National Technical Meeting Anaheim, USA, January 26-28, 2000 p574

    [16]

    Giugno L, Luise M 2005 13th European Signal Processing Conference Antalya, Turkey, September 4-8, 2005 p760

    [17]

    Zanier F, Bacci G, Luise M 2009 Proc. IEEE 3 748

    [18]

    Betz J W 1999 Proceedings of ION National Technical Meeting San Diego, USA, January 25-27, 1999 p639

    [19]

    Moeneclaey M 1983 IEEE Trans. Commun. 31 1029

    [20]

    Andrea A N D, Mengali U, Reggiannini R 1994 IEEE Trans. Commun. 42 1391

    [21]

    Golay M J E 1961 IEEE Trans. Inform. Theory 7 644

  • [1]

    Stojanovic M, Preisig J 2009 IEEE Commun. Mag. 47 84

    [2]

    Kilfoyle D B, Baggerroer A B 2000 IEEE J. Ocean Eng. 25 1

    [3]

    Yu Y, Zhou F, Qiao G 2012 Acta Phys. Sin. 61 234301 (in Chinese) [于洋, 周锋, 乔钢 2012 61 234301]

    [4]

    He C B, Huang J G, Han J, Zhang Q F 2009 Acta Phys. Sin. 58 8379 (in Chinese) [何成兵, 黄建国, 韩晶, 张群飞 2009 58 8379]

    [5]

    Yin J W, Hui J Y, Wang Y L, Hui J 2007 Acta Phys. Sin. 56 5915 (in Chinese) [殷敬伟, 惠俊英, 王逸林, 慧娟 2007 56 5915]

    [6]

    Wang N, Liu J Z 2002 Chin. Phys. 11 456

    [7]

    Duan R, Yang K D, Ma Y L, Lei B 2012 Chin. Phys. B 21 124301

    [8]

    Sarwate D S 1979 IEEE Trans. Inform. Theory 25 720

    [9]

    Welch L R 1974 IEEE Trans. Inform. Theory 20 397

    [10]

    Levenshtein V I 1996 Proceedings of IEEE 4th International Symposium On Spread Spectrum Techniques and Applications (Vol. 2) (Mainz: IEEE) p657

    [11]

    Stanczak S, Boche H, Haardt M 2001 Proceedings of IEEE Global Communications Conference (Vol. 1) (San Antonic: IEEE) p589

    [12]

    Pott A, Bradley S P 1995 IEEE Trans. Inform. Theory 41 301

    [13]

    Wolfmann J 1992 IEEE Trans. Inform. Theory 38 1412

    [14]

    Popvia B M 1995 IEEE Electron. Lett. 31 944

    [15]

    Fishman P A, Betz J W 2000 Proceedings of the Institute of Navigation's National Technical Meeting Anaheim, USA, January 26-28, 2000 p574

    [16]

    Giugno L, Luise M 2005 13th European Signal Processing Conference Antalya, Turkey, September 4-8, 2005 p760

    [17]

    Zanier F, Bacci G, Luise M 2009 Proc. IEEE 3 748

    [18]

    Betz J W 1999 Proceedings of ION National Technical Meeting San Diego, USA, January 25-27, 1999 p639

    [19]

    Moeneclaey M 1983 IEEE Trans. Commun. 31 1029

    [20]

    Andrea A N D, Mengali U, Reggiannini R 1994 IEEE Trans. Commun. 42 1391

    [21]

    Golay M J E 1961 IEEE Trans. Inform. Theory 7 644

  • [1] 蔡宗楷, 徐灿, 郑志刚. 高阶耦合相振子系统的同步动力学.  , 2021, 70(22): 220501. doi: 10.7498/aps.70.20211206
    [2] 郑志刚, 翟云, 王学彬, 陈宏斌, 徐灿. 耦合相振子系统同步的序参量理论.  , 2020, 69(8): 080502. doi: 10.7498/aps.69.20191968
    [3] 李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠. 复杂网络时空混沌同步的Backstepping设计.  , 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [4] 梁义, 王兴元. 结点含时滞的具有零和非零时滞耦合的复杂网络混沌同步.  , 2013, 62(1): 018901. doi: 10.7498/aps.62.018901
    [5] 都琳, 徐伟, 许勇, 王亮. 噪声诱导的二维复时空系统的同步研究.  , 2012, 61(5): 050504. doi: 10.7498/aps.61.050504
    [6] 敬晓丹, 吕翎. 非线性耦合完全网络的时空混沌同步.  , 2009, 58(11): 7539-7543. doi: 10.7498/aps.58.7539
    [7] 王 划, 韩正之, 章 伟, 谢七月. 具有不确定参数的Liu混沌系统的同步.  , 2008, 57(5): 2779-2783. doi: 10.7498/aps.57.2779
    [8] 韩 敏, 牛志强, 韩 冰. 一种参数摄动的混沌异结构同步方法.  , 2008, 57(11): 6824-6829. doi: 10.7498/aps.57.6824
    [9] 胡建兵, 韩 焱, 赵灵冬. 基于Lyapunov方程的分数阶混沌系统同步.  , 2008, 57(12): 7522-7526. doi: 10.7498/aps.57.7522
    [10] 罗润梓. 一个新混沌系统的脉冲控制与同步.  , 2007, 56(10): 5655-5660. doi: 10.7498/aps.56.5655
    [11] 钱 郁, 宋宣玉, 时 伟, 陈光旨, 薛 郁. 可激发介质湍流的耦合同步及控制.  , 2006, 55(9): 4420-4427. doi: 10.7498/aps.55.4420
    [12] 王占山, 张化光, 王智良. 一类混沌神经网络的全局同步.  , 2006, 55(6): 2687-2693. doi: 10.7498/aps.55.2687
    [13] 桑新柱, 余重秀, 王葵如. 波长可调谐混沌产生和同步的实验研究.  , 2006, 55(11): 5728-5732. doi: 10.7498/aps.55.5728
    [14] 于洪洁, 刘延柱. 对称非线性耦合混沌系统的同步.  , 2005, 54(7): 3029-3033. doi: 10.7498/aps.54.3029
    [15] 马 军, 廖高华, 莫晓华, 李维学, 张平伟. 超混沌系统的间歇同步与控制.  , 2005, 54(12): 5585-5590. doi: 10.7498/aps.54.5585
    [16] 陶朝海, 陆君安. 混沌系统的速度反馈同步.  , 2005, 54(11): 5058-5061. doi: 10.7498/aps.54.5058
    [17] 颜森林, 迟泽英, 陈文建, 王泽农. 激光混沌同步和解码以及优化.  , 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
    [18] 张旭, 沈柯. 时空混沌的单向耦合同步.  , 2002, 51(12): 2702-2706. doi: 10.7498/aps.51.2702
    [19] 卢志刚, 于灵慧, 柳晓菁, 高美静, 吴士昌. 克服扰动的混沌逆控制同步系统.  , 2002, 51(10): 2211-2215. doi: 10.7498/aps.51.2211
    [20] 赖建文, 周世平, 李国辉, 徐得名. 间歇驱动混沌同步法.  , 2001, 50(1): 21-25. doi: 10.7498/aps.50.21
计量
  • 文章访问数:  6066
  • PDF下载量:  503
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-15
  • 修回日期:  2014-01-13
  • 刊出日期:  2014-05-05

/

返回文章
返回
Baidu
map