-
脉冲序列控制是针对工作于电感电流断续导电模式的开关变换器提出的一种非线性、离散控制技术. 当开关变换器工作在电感电流连续导电模式时,脉冲序列控制开关变换器存在低频振荡现象,严重影响了脉冲序列控制开关变换器的稳态及瞬态性能. 针对这一问题,本文提出一种谷值电流型脉冲序列控制方法,将脉冲序列控制的应用范围从电感电流断续导电模式扩展到电感电流连续导电模式. 建立了谷值电流型脉冲序列控制开关变换器的能量迭代模型,并与传统脉冲序列控制开关变换器的能量模型进行对比. 结果表明谷值电流型脉冲序列控制电感电流连续导电模式开关变换器具有与传统脉冲序列控制电感电流断续导电模式开关变换器相同的能量传递模式,从而在根本上消除了传统脉冲序列控制电感电流连续导电模式变换器存在的低频振荡现象.Pulse train (PT) control technique is a novel discrete control technique for switching converter operating in discontinuous conduction mode (DCM). When the inductive energy storage is not zero, the low-frequency oscillation phenomenon may occur in PT controlled switching converters operating in continuous conduction mode (CCM). The low-frequency oscillation phenomenon will seriously affect the steady and transient performances of switching converters. In order to solve this problem, valley current mode pulse train (VCM-PT) control technique, which extends the application range from DCM to CCM, is proposed in this paper. The energy model of VCM-PT controlled switching converter is derived and compared with the energy model of PT controlled switching converter. Result indicates that the VCM-PT controlled CCM switching converter has the same energy transfer mode as the traditional PT controlled DCM switching converter and can eliminate fundamentally the low-frequency oscillation phenomenon.
-
Keywords:
- switching converter /
- pulse train /
- continuous conduction mode /
- energy model
[1] Wang F Q, Ma X K 2013 Chin. Phys. B 22 030506
[2] Zhou G H, Bao B C, Xu J P, Jin Y Y 2010 Chin. Phys. B 19 050509
[3] Telefus M, Shteynberg A, Ferdowsi M, Emadi A 2004 IEEE Trans. Power Electron. 19 757
[4] Ferdowsi M, Emadi A, Telefus M, Shteynberq A 2005 IEEE Trans. Aerosp. Electron. 41 181
[5] Ferdowsi M, Emadi A, Telefus M, Shteynberq A 2005 IEEE Trans. Power Electron. 20 798
[6] Qin M, Xu J P 2009 Acta Phys. Sin. 58 7603 (in Chinese)[秦明, 许建平 2009 58 7603]
[7] Qin M, Xu J P, Gao Y, Wang J P 2012 Acta Phys. Sin. 61 030204 (in Chinese)[秦明, 许建平, 高玉, 王金平 2012 61 030204]
[8] Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin. 61 120501 (in Chinese)[沙金, 包伯成, 许建平, 高玉 2012 61 120501]
[9] Wang J P, Xu J P, Zhou G H, Mi C B, Qin M 2011 Acta Phys. Sin. 60 048402 (in Chinese)[王金平, 许建平, 周国华, 米长宝, 秦明 2011 60 048402]
[10] Luo P, Zhen S W, Li Z J, Zhang B 2009 Transactions of China Electrotechnical Society. 24 67 (in Chinese)[罗萍, 甄少伟, 李肇基, 张波 2009 电工技术学报 24 67]
[11] Qin M, Xu J P 2010 IEEE Trans. Ind. Electron. 57 3497
[12] Qin M, Xu J P 2013 IEEE Trans. Ind. Electron. 60 1819
[13] Lei B, Xiao G C, Wu X L 2013 Chin. Phys. B 22 060509
-
[1] Wang F Q, Ma X K 2013 Chin. Phys. B 22 030506
[2] Zhou G H, Bao B C, Xu J P, Jin Y Y 2010 Chin. Phys. B 19 050509
[3] Telefus M, Shteynberg A, Ferdowsi M, Emadi A 2004 IEEE Trans. Power Electron. 19 757
[4] Ferdowsi M, Emadi A, Telefus M, Shteynberq A 2005 IEEE Trans. Aerosp. Electron. 41 181
[5] Ferdowsi M, Emadi A, Telefus M, Shteynberq A 2005 IEEE Trans. Power Electron. 20 798
[6] Qin M, Xu J P 2009 Acta Phys. Sin. 58 7603 (in Chinese)[秦明, 许建平 2009 58 7603]
[7] Qin M, Xu J P, Gao Y, Wang J P 2012 Acta Phys. Sin. 61 030204 (in Chinese)[秦明, 许建平, 高玉, 王金平 2012 61 030204]
[8] Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin. 61 120501 (in Chinese)[沙金, 包伯成, 许建平, 高玉 2012 61 120501]
[9] Wang J P, Xu J P, Zhou G H, Mi C B, Qin M 2011 Acta Phys. Sin. 60 048402 (in Chinese)[王金平, 许建平, 周国华, 米长宝, 秦明 2011 60 048402]
[10] Luo P, Zhen S W, Li Z J, Zhang B 2009 Transactions of China Electrotechnical Society. 24 67 (in Chinese)[罗萍, 甄少伟, 李肇基, 张波 2009 电工技术学报 24 67]
[11] Qin M, Xu J P 2010 IEEE Trans. Ind. Electron. 57 3497
[12] Qin M, Xu J P 2013 IEEE Trans. Ind. Electron. 60 1819
[13] Lei B, Xiao G C, Wu X L 2013 Chin. Phys. B 22 060509
计量
- 文章访问数: 6573
- PDF下载量: 590
- 被引次数: 0