-
Al-Cu-Ge合金是典型的三元共晶体系,在工业上有重要的应用价值,对其进行研究有助于了解该合金的热物理性质和提高该合金的结构性能. 本文选择了Al55Cu10Ge35,Al70Cu10Ge20和Al80Cu10Ge10三种成分合金作为研究对象,对合金的固态比热和热膨胀系数进行了测量,并对比分析了合金在近平衡凝固和落管快速凝固条件下的组织特征和凝固路径. 研究发现,合金比热随Al含量的增大和Ge含量的减少而增大. 这三种成分合金的软化温度均为666 K,物理热膨胀系数α在370–650 K温度范围内基本一致,约为1.5×10-5 K-1. 近平衡凝固条件下合金凝固过程中最后一步反应生成的均为(Al)+(Ge)二相共晶而不是三元共晶,这表明(Al)、(Ge)和CuAl2相在这三种成分的Al-Cu-Ge合金中难以同时形核并协同生长. 然而,在快速凝固条件下,初生相的形核和生成受到抑制,合金中更易于形成二相共晶和三元共晶组织.Al-Cu-Ge alloy system, a typical ternary eutectic alloy system, has been used widely in the industries. Our research is helpful for better understanding its thermophysical properties and improving its structural performance. In this paper, the specific heat values and thermal expansion coefficients of Al55Cu10Ge35, Al70Cu10Ge20 and Al80Cu10Ge10 alloys are investigated. The microstructural characteristics and the solidification paths of these alloys under near-equilibrium solidification and rapid solidification conditions are studied comparatively. Their specific heat values increase as Al content increases and Ge content decreases. The softening temperature is 666 K, and the thermal expansion coefficient fluctuates around 1.5×10-5 K-1 in the temperature range of 370–650 K. Under a near-equilibrium solidification condition, the last formation microstructure is (Al)+(Ge) pseudobinary eutectic instead of ternary eutectic. This means that (Al), (Ge), and CuAl2 phases are difficult to nucleate simultaneously or grow cooperatively. In comparison, during rapid solidification, the nucleation of primary phase is depressed, pseudobinary eutectic and ternary eutectic are much easier to form in these alloys.
-
Keywords:
- specific heat /
- thermal expansion coefficient /
- rapid solidification /
- undercooling
[1] Sun J Q, Zhong R P 2007 Ptca(Part: A Phys. Test.) 43 112 (in Chinese) [孙建强, 钟润萍 2007 理化检验-物理分册 43 112]
[2] Yan J, Shan L, Luo Q, Wang W H, Wen H H 2009 Chin. Phys. B 18 704
[3] Wu M M, Peng J, Cheng Y Z, Xiao X L, Chen D F, Hu Z B 2013 J. Alloys Compd. 577 295
[4] Rudajevová A 2007 J. Alloys Compd. 430 153
[5] Wang B L, Mai Y W, Zhang X H 2004 Acta Mater. 52 4961
[6] Sayir A, Farmer S C 2000 Acta Mater. 48 4691
[7] Shabestari S G, Moemeni H 2004 J. Mater. Process. Tech. 153 193
[8] Luo A A, Fu P H, Peng L M, Kang X Y, Li Z Z, Zhu T Y 2011 Metall. Mater. Trans. A 43 360
[9] Yan N, Wang W L, Dai F P, Wei B B 2011 Acta Phys. Sin. 60 036402 (in Chinese)[闫娜, 王伟丽, 代富平, 魏炳波 2011 60 036402]
[10] Ruan Y, Lu X Y 2012 J. Alloys Compd. 542 232
[11] Pan X H, Hong Y, Jin W Q 2005 Chin. Phys. Lett. 11 2966
[12] Yi X H, Liu R S, Tian Z A, Hou Z Y, Wang X, Zhou Q Y 2006 Acta Phys. Sin. 55 5386 (in Chinese) [易学华, 刘让苏, 田泽安, 侯兆阳, 王鑫, 周群益 2006 55 5386]
[13] Pan X H, Jin W Q, Liu Y, Ai F 2009 Chin. Phys. B 18 699
[14] Qu M, Liu L, Zhao M 2010 International Conference on Advances in Materials and Manufacturing Processes ShenZhen, Peoples R China, November 6-8, 2010 p729
[15] Xu R, Zhao H, Li J, Liu R, Wang W K 2006 Mater. Lett. 60 783
[16] Anusionwu B C, Adebayo G A, Madu C A 2009 Appl. Phys. A 97 533
[17] Kanibolotsky D S, Bieloborodova O V, Kotova N V, Lisnyak V V 2002 J. Therm. Anal. Calorim. 70 975
[18] Zhou X 2011 Trans. Nonferrous Met. Soc. China 21 1513 (in Chinese) [周娴 2011 中国有色金属学报 21 1513]
[19] Zhang X L, He D Y, Li X Y, Jiang J M 2009 Mater. Sci. Technol. 17 65 (in Chinese) [张晓丽, 贺定勇, 李晓延, 蒋建敏 2009 材料科学与工艺 17 65]
[20] Stadnik Z M, Stroink G 1991 Phys. Rev. B 43 894
[21] Kanibolotsky D S, Kotova N V, Bieloborodova O A, Lisnyak V V 2003 J. Chem. Therm. 35 1763
[22] Villars P, Prince A, Okamoto H 1997 Ternary Alloy Phase Diagrams (2nd Ed.) (New York: ASM International) p3216
[23] Brandes E A, Brook G B 1992 Smithells Metals Reference Book (7th Ed.) (Great Britain: Bath) pp8-41
[24] Lee E, Ahn S 1994 Acta Metall. Mater. 42 3231
[25] Dragnevski K, Cochrane R F, Mullis A M 2002 Phys. Rev. Lett. 89 215502
-
[1] Sun J Q, Zhong R P 2007 Ptca(Part: A Phys. Test.) 43 112 (in Chinese) [孙建强, 钟润萍 2007 理化检验-物理分册 43 112]
[2] Yan J, Shan L, Luo Q, Wang W H, Wen H H 2009 Chin. Phys. B 18 704
[3] Wu M M, Peng J, Cheng Y Z, Xiao X L, Chen D F, Hu Z B 2013 J. Alloys Compd. 577 295
[4] Rudajevová A 2007 J. Alloys Compd. 430 153
[5] Wang B L, Mai Y W, Zhang X H 2004 Acta Mater. 52 4961
[6] Sayir A, Farmer S C 2000 Acta Mater. 48 4691
[7] Shabestari S G, Moemeni H 2004 J. Mater. Process. Tech. 153 193
[8] Luo A A, Fu P H, Peng L M, Kang X Y, Li Z Z, Zhu T Y 2011 Metall. Mater. Trans. A 43 360
[9] Yan N, Wang W L, Dai F P, Wei B B 2011 Acta Phys. Sin. 60 036402 (in Chinese)[闫娜, 王伟丽, 代富平, 魏炳波 2011 60 036402]
[10] Ruan Y, Lu X Y 2012 J. Alloys Compd. 542 232
[11] Pan X H, Hong Y, Jin W Q 2005 Chin. Phys. Lett. 11 2966
[12] Yi X H, Liu R S, Tian Z A, Hou Z Y, Wang X, Zhou Q Y 2006 Acta Phys. Sin. 55 5386 (in Chinese) [易学华, 刘让苏, 田泽安, 侯兆阳, 王鑫, 周群益 2006 55 5386]
[13] Pan X H, Jin W Q, Liu Y, Ai F 2009 Chin. Phys. B 18 699
[14] Qu M, Liu L, Zhao M 2010 International Conference on Advances in Materials and Manufacturing Processes ShenZhen, Peoples R China, November 6-8, 2010 p729
[15] Xu R, Zhao H, Li J, Liu R, Wang W K 2006 Mater. Lett. 60 783
[16] Anusionwu B C, Adebayo G A, Madu C A 2009 Appl. Phys. A 97 533
[17] Kanibolotsky D S, Bieloborodova O V, Kotova N V, Lisnyak V V 2002 J. Therm. Anal. Calorim. 70 975
[18] Zhou X 2011 Trans. Nonferrous Met. Soc. China 21 1513 (in Chinese) [周娴 2011 中国有色金属学报 21 1513]
[19] Zhang X L, He D Y, Li X Y, Jiang J M 2009 Mater. Sci. Technol. 17 65 (in Chinese) [张晓丽, 贺定勇, 李晓延, 蒋建敏 2009 材料科学与工艺 17 65]
[20] Stadnik Z M, Stroink G 1991 Phys. Rev. B 43 894
[21] Kanibolotsky D S, Kotova N V, Bieloborodova O A, Lisnyak V V 2003 J. Chem. Therm. 35 1763
[22] Villars P, Prince A, Okamoto H 1997 Ternary Alloy Phase Diagrams (2nd Ed.) (New York: ASM International) p3216
[23] Brandes E A, Brook G B 1992 Smithells Metals Reference Book (7th Ed.) (Great Britain: Bath) pp8-41
[24] Lee E, Ahn S 1994 Acta Metall. Mater. 42 3231
[25] Dragnevski K, Cochrane R F, Mullis A M 2002 Phys. Rev. Lett. 89 215502
计量
- 文章访问数: 7076
- PDF下载量: 801
- 被引次数: 0