-
基于密度泛函理论,采用第一性原理方法计算了在Mo中掺杂摩尔百分比分别为2.08% 和4.17% 的过渡金属元素W,Ti,Cu和Fe后,体系在 [111](110)滑移系统上的广义层错能以及解理能,并研究了掺杂元素对Mo的剪切形变以及脆性-韧性的影响. 研究发现,掺杂W和Ti 原子会使体系剪切形变的发生变得困难,并使Mo材料变脆;而掺杂Cu和Fe原子则会使体系剪切形变的发生变得相对容易,并使Mo 材料的韧性增强. 此外,随着掺杂浓度的增加,掺杂W会使体系剪切形变的发生变得更为困难,并使Mo材料脆性更强;而掺杂Fe则会使体系剪切形变的发生变得更为容易,并使Mo材料的韧性更强.For Mo doped with the transition metals W, Ti, Cu and Fe with the molar percentages of 2.08% and 4.17%, the generalized-stacking-fault energies and the cleavage energies along the direction [111] in (110) plane are calculated by the first principles method based on the density functional theory, and the shear information and the brittle-ductile influences of the transition metals on the Mo material are investigated. It is found that doping W and Ti atoms can make the shear deformation difficult to happen and the brittleness of Mo enhanced, however, doping Cu and Fe atoms can make the shear deformation easy to happen and the ductility of Mo enhanced. Moreover, with the increase of doping concentration, the influences of W and Fe atoms are more obvious. Doping W atoms can make the shear deformation more difficult to happen and the brittleness of Mo stronger. Doping Fe atoms can make the shear deformation easier to happen and the ductility of Mo stronger.
[1] Bai X Y, Chi A L 2012 Non-Ferrous Mining and Metallurgy 28 54 (in Chinese) [白小叶, 迟爱玲 2012 有色矿冶 28 54]
[2] Cao W C, Liu J, Ren Y X 2006 Rare Metals Lett. 8 25 (in Chinese) [曹维成, 刘静, 任宜霞 2006 稀有金属快报 8 25]
[3] Liu G, Zhang G J, Jiang F, Ding X D, Sun Y J, Sun J, Ma E 2013 Nat. Mater. 12 344
[4] Perepezko J H 2009 Science 326 1068
[5] Dimiduk D M, Perepezko J H 2003 Mater. Res. Soc. Bull. 9 639
[6] Liu H, Ju J H, Zhang J L, Cui S, Xia M X 2011 China Molybdenum Industry 35 26 (in Chinese) [刘辉, 巨建辉, 张军良, 崔顺, 夏明星 2011 中国钼业 35 26]
[7] Wadsworth J, Nieh T G, Stephens J J 1988 Int. Mater. Rev. 33 131
[8] Cockeram B V 2009 Metall. Mater. Trans. 40A 2843
[9] Schneibel J H, Brady M P, Kruzic J J, Ritchie R O 2005 Z. f\"ur Metall. 96 632
[10] Cockeram B V, Smith R W, Hashimoto N, Snead L L 2011 J. Nucl. Mater. 418 121
[11] Byun T S, Li M, Cockeram B V, Snead L L 2008 J. Nucl. Mater. 376 240
[12] Cockeram B V 2010 Mater. Sci. Eng. A 528 288
[13] Sturm D, Heilmaier M, Schneibel J H, Jéhanno P, Skrotzki B, Saage H 2007 Mater. Sci. Eng. A 463 107
[14] Trinkle D R, Woodward C 2005 Science 310 1665
[15] Medvedeva N I, Gornostyrev Y N, Freeman A J 2005 Phys. Rev. B 72 134107
[16] Medvedeva N I, Gornostyrev Y N, Freeman A J 2007 Phys. Rev. B 76 212104
[17] Vitek V 1968 Philos. Mag. A 18 773
[18] Vitek V 1974 Cryst. Lattice Defects 5 1
[19] Joós B, Ren Q, Duesbery M S 1994 Phys. Rev. B 50 5890
[20] Hartford J, von Sydow B, Wahnstr G, Lunquiet B I 1998 Phys. Rev. B 58 2487
[21] Brandl C, Derlet P M, Swygenhoven H V 2007 Phys. Rev. B 76 054124
[22] Thomson R 1995 Phys. Rev. B 52 7214
[23] Sun Y, Kaxiras E 1997 Philos. Mag. A 75 1117
[24] Yan J A, Wang C Y, Wang S Y 2004 Phys. Rev. B 70 174105
[25] Chen L Q, Wang C Y, Yu T 2006 Acta Phys. Sin. 55 5980 (in Chinese) [陈丽群, 王崇愚, 于涛 2006 55 5980]
[26] Yun Y, Kwon S C, Kim W W 2007 Comput. Phys. Commun. 177 49
[27] Chen L Q, Yu T, Wang C Y, Qiu Z C 2008 Acta Phys. Sin. 57 443 (in Chinese) [陈丽群, 于涛, 王崇愚, 邱正琛 2008 57 443]
[28] Mei J F, Li J W, Ni Y S, Wang H T 2011 Acta Phys. Sin. 60 066104 (in Chinese) [梅继法, 黎军顽, 倪玉山, 王华滔 2011 60 066104]
[29] Frederiksen S L, Jacobsen K W 2003 Philos. Mag. 83 365
[30] Wang S F 2006 Chin. Phys. 15 1301
[31] Chen L Q, Wang C Y, Yu T 2008 Chin. Phys. B 17 0662
[32] Zhang Y, Xie L J, Zhang J M, Xu K W 2011 Chin. Phys. B 20 026102
[33] Watanabe R 2007 Strength, Fracture and Complex 5 13
[34] Zhang J M, Wu J X, Huang Y J, Xu K W 2006 Acta Phys. Sin. 55 393 (in Chinese) [张建民, 吴军喜, 黄育红, 徐可为 2006 55 393]
[35] Wei X M, Zhang J M, Xu K W 2007 Appl. Surf. Sci. 254 1489
[36] Hohenberg P C, Kohn W 1964 Phys. Rev. 136 B864
[37] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[38] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[39] Kresse G, Joubert J 1999 Phys. Rev. B 59 1758
[40] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[41] Wang C, Wang C Y 2008 Surf. Sci. 602 2604
[42] Rice J R 1992 J. Mech. Phys. Solids 40 239
[43] Fu C L 1990 J. Mater. Res. 5 971
[44] Gong H R 2009 Intermetallics 17 562
[45] Rice J R, Thomson R 1974 Philos. Mag. 29 73
-
[1] Bai X Y, Chi A L 2012 Non-Ferrous Mining and Metallurgy 28 54 (in Chinese) [白小叶, 迟爱玲 2012 有色矿冶 28 54]
[2] Cao W C, Liu J, Ren Y X 2006 Rare Metals Lett. 8 25 (in Chinese) [曹维成, 刘静, 任宜霞 2006 稀有金属快报 8 25]
[3] Liu G, Zhang G J, Jiang F, Ding X D, Sun Y J, Sun J, Ma E 2013 Nat. Mater. 12 344
[4] Perepezko J H 2009 Science 326 1068
[5] Dimiduk D M, Perepezko J H 2003 Mater. Res. Soc. Bull. 9 639
[6] Liu H, Ju J H, Zhang J L, Cui S, Xia M X 2011 China Molybdenum Industry 35 26 (in Chinese) [刘辉, 巨建辉, 张军良, 崔顺, 夏明星 2011 中国钼业 35 26]
[7] Wadsworth J, Nieh T G, Stephens J J 1988 Int. Mater. Rev. 33 131
[8] Cockeram B V 2009 Metall. Mater. Trans. 40A 2843
[9] Schneibel J H, Brady M P, Kruzic J J, Ritchie R O 2005 Z. f\"ur Metall. 96 632
[10] Cockeram B V, Smith R W, Hashimoto N, Snead L L 2011 J. Nucl. Mater. 418 121
[11] Byun T S, Li M, Cockeram B V, Snead L L 2008 J. Nucl. Mater. 376 240
[12] Cockeram B V 2010 Mater. Sci. Eng. A 528 288
[13] Sturm D, Heilmaier M, Schneibel J H, Jéhanno P, Skrotzki B, Saage H 2007 Mater. Sci. Eng. A 463 107
[14] Trinkle D R, Woodward C 2005 Science 310 1665
[15] Medvedeva N I, Gornostyrev Y N, Freeman A J 2005 Phys. Rev. B 72 134107
[16] Medvedeva N I, Gornostyrev Y N, Freeman A J 2007 Phys. Rev. B 76 212104
[17] Vitek V 1968 Philos. Mag. A 18 773
[18] Vitek V 1974 Cryst. Lattice Defects 5 1
[19] Joós B, Ren Q, Duesbery M S 1994 Phys. Rev. B 50 5890
[20] Hartford J, von Sydow B, Wahnstr G, Lunquiet B I 1998 Phys. Rev. B 58 2487
[21] Brandl C, Derlet P M, Swygenhoven H V 2007 Phys. Rev. B 76 054124
[22] Thomson R 1995 Phys. Rev. B 52 7214
[23] Sun Y, Kaxiras E 1997 Philos. Mag. A 75 1117
[24] Yan J A, Wang C Y, Wang S Y 2004 Phys. Rev. B 70 174105
[25] Chen L Q, Wang C Y, Yu T 2006 Acta Phys. Sin. 55 5980 (in Chinese) [陈丽群, 王崇愚, 于涛 2006 55 5980]
[26] Yun Y, Kwon S C, Kim W W 2007 Comput. Phys. Commun. 177 49
[27] Chen L Q, Yu T, Wang C Y, Qiu Z C 2008 Acta Phys. Sin. 57 443 (in Chinese) [陈丽群, 于涛, 王崇愚, 邱正琛 2008 57 443]
[28] Mei J F, Li J W, Ni Y S, Wang H T 2011 Acta Phys. Sin. 60 066104 (in Chinese) [梅继法, 黎军顽, 倪玉山, 王华滔 2011 60 066104]
[29] Frederiksen S L, Jacobsen K W 2003 Philos. Mag. 83 365
[30] Wang S F 2006 Chin. Phys. 15 1301
[31] Chen L Q, Wang C Y, Yu T 2008 Chin. Phys. B 17 0662
[32] Zhang Y, Xie L J, Zhang J M, Xu K W 2011 Chin. Phys. B 20 026102
[33] Watanabe R 2007 Strength, Fracture and Complex 5 13
[34] Zhang J M, Wu J X, Huang Y J, Xu K W 2006 Acta Phys. Sin. 55 393 (in Chinese) [张建民, 吴军喜, 黄育红, 徐可为 2006 55 393]
[35] Wei X M, Zhang J M, Xu K W 2007 Appl. Surf. Sci. 254 1489
[36] Hohenberg P C, Kohn W 1964 Phys. Rev. 136 B864
[37] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[38] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[39] Kresse G, Joubert J 1999 Phys. Rev. B 59 1758
[40] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[41] Wang C, Wang C Y 2008 Surf. Sci. 602 2604
[42] Rice J R 1992 J. Mech. Phys. Solids 40 239
[43] Fu C L 1990 J. Mater. Res. 5 971
[44] Gong H R 2009 Intermetallics 17 562
[45] Rice J R, Thomson R 1974 Philos. Mag. 29 73
计量
- 文章访问数: 5886
- PDF下载量: 669
- 被引次数: 0