搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡元素掺杂对Mo力学性能的第一性原理研究

郭元军 刘瑞萍 杨致 李秀燕

引用本文:
Citation:

过渡元素掺杂对Mo力学性能的第一性原理研究

郭元军, 刘瑞萍, 杨致, 李秀燕

Mechanical properties of transition metals doped Mo:a first-principals study

Guo Yuan-Jun, Liu Rui-Ping, Yang Zhi, Li Xiu-Yan
PDF
导出引用
  • 基于密度泛函理论,采用第一性原理方法计算了在Mo中掺杂摩尔百分比分别为2.08% 和4.17% 的过渡金属元素W,Ti,Cu和Fe后,体系在 [111](110)滑移系统上的广义层错能以及解理能,并研究了掺杂元素对Mo的剪切形变以及脆性-韧性的影响. 研究发现,掺杂W和Ti 原子会使体系剪切形变的发生变得困难,并使Mo材料变脆;而掺杂Cu和Fe原子则会使体系剪切形变的发生变得相对容易,并使Mo 材料的韧性增强. 此外,随着掺杂浓度的增加,掺杂W会使体系剪切形变的发生变得更为困难,并使Mo材料脆性更强;而掺杂Fe则会使体系剪切形变的发生变得更为容易,并使Mo材料的韧性更强.
    For Mo doped with the transition metals W, Ti, Cu and Fe with the molar percentages of 2.08% and 4.17%, the generalized-stacking-fault energies and the cleavage energies along the direction [111] in (110) plane are calculated by the first principles method based on the density functional theory, and the shear information and the brittle-ductile influences of the transition metals on the Mo material are investigated. It is found that doping W and Ti atoms can make the shear deformation difficult to happen and the brittleness of Mo enhanced, however, doping Cu and Fe atoms can make the shear deformation easy to happen and the ductility of Mo enhanced. Moreover, with the increase of doping concentration, the influences of W and Fe atoms are more obvious. Doping W atoms can make the shear deformation more difficult to happen and the brittleness of Mo stronger. Doping Fe atoms can make the shear deformation easier to happen and the ductility of Mo stronger.
    • 基金项目: 国家自然科学基金(批准号:11104199)和山西省自然科学基金(批准号:2012011021-3)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11104199) and the Natural Science Foundation of Shanxi Province, China (Grant No. 2012011021-3).
    [1]

    Bai X Y, Chi A L 2012 Non-Ferrous Mining and Metallurgy 28 54 (in Chinese) [白小叶, 迟爱玲 2012 有色矿冶 28 54]

    [2]

    Cao W C, Liu J, Ren Y X 2006 Rare Metals Lett. 8 25 (in Chinese) [曹维成, 刘静, 任宜霞 2006 稀有金属快报 8 25]

    [3]

    Liu G, Zhang G J, Jiang F, Ding X D, Sun Y J, Sun J, Ma E 2013 Nat. Mater. 12 344

    [4]

    Perepezko J H 2009 Science 326 1068

    [5]

    Dimiduk D M, Perepezko J H 2003 Mater. Res. Soc. Bull. 9 639

    [6]

    Liu H, Ju J H, Zhang J L, Cui S, Xia M X 2011 China Molybdenum Industry 35 26 (in Chinese) [刘辉, 巨建辉, 张军良, 崔顺, 夏明星 2011 中国钼业 35 26]

    [7]

    Wadsworth J, Nieh T G, Stephens J J 1988 Int. Mater. Rev. 33 131

    [8]

    Cockeram B V 2009 Metall. Mater. Trans. 40A 2843

    [9]

    Schneibel J H, Brady M P, Kruzic J J, Ritchie R O 2005 Z. f\"ur Metall. 96 632

    [10]

    Cockeram B V, Smith R W, Hashimoto N, Snead L L 2011 J. Nucl. Mater. 418 121

    [11]

    Byun T S, Li M, Cockeram B V, Snead L L 2008 J. Nucl. Mater. 376 240

    [12]

    Cockeram B V 2010 Mater. Sci. Eng. A 528 288

    [13]

    Sturm D, Heilmaier M, Schneibel J H, Jéhanno P, Skrotzki B, Saage H 2007 Mater. Sci. Eng. A 463 107

    [14]

    Trinkle D R, Woodward C 2005 Science 310 1665

    [15]

    Medvedeva N I, Gornostyrev Y N, Freeman A J 2005 Phys. Rev. B 72 134107

    [16]

    Medvedeva N I, Gornostyrev Y N, Freeman A J 2007 Phys. Rev. B 76 212104

    [17]

    Vitek V 1968 Philos. Mag. A 18 773

    [18]

    Vitek V 1974 Cryst. Lattice Defects 5 1

    [19]

    Joós B, Ren Q, Duesbery M S 1994 Phys. Rev. B 50 5890

    [20]

    Hartford J, von Sydow B, Wahnstr G, Lunquiet B I 1998 Phys. Rev. B 58 2487

    [21]

    Brandl C, Derlet P M, Swygenhoven H V 2007 Phys. Rev. B 76 054124

    [22]

    Thomson R 1995 Phys. Rev. B 52 7214

    [23]

    Sun Y, Kaxiras E 1997 Philos. Mag. A 75 1117

    [24]

    Yan J A, Wang C Y, Wang S Y 2004 Phys. Rev. B 70 174105

    [25]

    Chen L Q, Wang C Y, Yu T 2006 Acta Phys. Sin. 55 5980 (in Chinese) [陈丽群, 王崇愚, 于涛 2006 55 5980]

    [26]

    Yun Y, Kwon S C, Kim W W 2007 Comput. Phys. Commun. 177 49

    [27]

    Chen L Q, Yu T, Wang C Y, Qiu Z C 2008 Acta Phys. Sin. 57 443 (in Chinese) [陈丽群, 于涛, 王崇愚, 邱正琛 2008 57 443]

    [28]

    Mei J F, Li J W, Ni Y S, Wang H T 2011 Acta Phys. Sin. 60 066104 (in Chinese) [梅继法, 黎军顽, 倪玉山, 王华滔 2011 60 066104]

    [29]

    Frederiksen S L, Jacobsen K W 2003 Philos. Mag. 83 365

    [30]

    Wang S F 2006 Chin. Phys. 15 1301

    [31]

    Chen L Q, Wang C Y, Yu T 2008 Chin. Phys. B 17 0662

    [32]

    Zhang Y, Xie L J, Zhang J M, Xu K W 2011 Chin. Phys. B 20 026102

    [33]

    Watanabe R 2007 Strength, Fracture and Complex 5 13

    [34]

    Zhang J M, Wu J X, Huang Y J, Xu K W 2006 Acta Phys. Sin. 55 393 (in Chinese) [张建民, 吴军喜, 黄育红, 徐可为 2006 55 393]

    [35]

    Wei X M, Zhang J M, Xu K W 2007 Appl. Surf. Sci. 254 1489

    [36]

    Hohenberg P C, Kohn W 1964 Phys. Rev. 136 B864

    [37]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [38]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [39]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [40]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [41]

    Wang C, Wang C Y 2008 Surf. Sci. 602 2604

    [42]

    Rice J R 1992 J. Mech. Phys. Solids 40 239

    [43]

    Fu C L 1990 J. Mater. Res. 5 971

    [44]

    Gong H R 2009 Intermetallics 17 562

    [45]

    Rice J R, Thomson R 1974 Philos. Mag. 29 73

  • [1]

    Bai X Y, Chi A L 2012 Non-Ferrous Mining and Metallurgy 28 54 (in Chinese) [白小叶, 迟爱玲 2012 有色矿冶 28 54]

    [2]

    Cao W C, Liu J, Ren Y X 2006 Rare Metals Lett. 8 25 (in Chinese) [曹维成, 刘静, 任宜霞 2006 稀有金属快报 8 25]

    [3]

    Liu G, Zhang G J, Jiang F, Ding X D, Sun Y J, Sun J, Ma E 2013 Nat. Mater. 12 344

    [4]

    Perepezko J H 2009 Science 326 1068

    [5]

    Dimiduk D M, Perepezko J H 2003 Mater. Res. Soc. Bull. 9 639

    [6]

    Liu H, Ju J H, Zhang J L, Cui S, Xia M X 2011 China Molybdenum Industry 35 26 (in Chinese) [刘辉, 巨建辉, 张军良, 崔顺, 夏明星 2011 中国钼业 35 26]

    [7]

    Wadsworth J, Nieh T G, Stephens J J 1988 Int. Mater. Rev. 33 131

    [8]

    Cockeram B V 2009 Metall. Mater. Trans. 40A 2843

    [9]

    Schneibel J H, Brady M P, Kruzic J J, Ritchie R O 2005 Z. f\"ur Metall. 96 632

    [10]

    Cockeram B V, Smith R W, Hashimoto N, Snead L L 2011 J. Nucl. Mater. 418 121

    [11]

    Byun T S, Li M, Cockeram B V, Snead L L 2008 J. Nucl. Mater. 376 240

    [12]

    Cockeram B V 2010 Mater. Sci. Eng. A 528 288

    [13]

    Sturm D, Heilmaier M, Schneibel J H, Jéhanno P, Skrotzki B, Saage H 2007 Mater. Sci. Eng. A 463 107

    [14]

    Trinkle D R, Woodward C 2005 Science 310 1665

    [15]

    Medvedeva N I, Gornostyrev Y N, Freeman A J 2005 Phys. Rev. B 72 134107

    [16]

    Medvedeva N I, Gornostyrev Y N, Freeman A J 2007 Phys. Rev. B 76 212104

    [17]

    Vitek V 1968 Philos. Mag. A 18 773

    [18]

    Vitek V 1974 Cryst. Lattice Defects 5 1

    [19]

    Joós B, Ren Q, Duesbery M S 1994 Phys. Rev. B 50 5890

    [20]

    Hartford J, von Sydow B, Wahnstr G, Lunquiet B I 1998 Phys. Rev. B 58 2487

    [21]

    Brandl C, Derlet P M, Swygenhoven H V 2007 Phys. Rev. B 76 054124

    [22]

    Thomson R 1995 Phys. Rev. B 52 7214

    [23]

    Sun Y, Kaxiras E 1997 Philos. Mag. A 75 1117

    [24]

    Yan J A, Wang C Y, Wang S Y 2004 Phys. Rev. B 70 174105

    [25]

    Chen L Q, Wang C Y, Yu T 2006 Acta Phys. Sin. 55 5980 (in Chinese) [陈丽群, 王崇愚, 于涛 2006 55 5980]

    [26]

    Yun Y, Kwon S C, Kim W W 2007 Comput. Phys. Commun. 177 49

    [27]

    Chen L Q, Yu T, Wang C Y, Qiu Z C 2008 Acta Phys. Sin. 57 443 (in Chinese) [陈丽群, 于涛, 王崇愚, 邱正琛 2008 57 443]

    [28]

    Mei J F, Li J W, Ni Y S, Wang H T 2011 Acta Phys. Sin. 60 066104 (in Chinese) [梅继法, 黎军顽, 倪玉山, 王华滔 2011 60 066104]

    [29]

    Frederiksen S L, Jacobsen K W 2003 Philos. Mag. 83 365

    [30]

    Wang S F 2006 Chin. Phys. 15 1301

    [31]

    Chen L Q, Wang C Y, Yu T 2008 Chin. Phys. B 17 0662

    [32]

    Zhang Y, Xie L J, Zhang J M, Xu K W 2011 Chin. Phys. B 20 026102

    [33]

    Watanabe R 2007 Strength, Fracture and Complex 5 13

    [34]

    Zhang J M, Wu J X, Huang Y J, Xu K W 2006 Acta Phys. Sin. 55 393 (in Chinese) [张建民, 吴军喜, 黄育红, 徐可为 2006 55 393]

    [35]

    Wei X M, Zhang J M, Xu K W 2007 Appl. Surf. Sci. 254 1489

    [36]

    Hohenberg P C, Kohn W 1964 Phys. Rev. 136 B864

    [37]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [38]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [39]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [40]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [41]

    Wang C, Wang C Y 2008 Surf. Sci. 602 2604

    [42]

    Rice J R 1992 J. Mech. Phys. Solids 40 239

    [43]

    Fu C L 1990 J. Mater. Res. 5 971

    [44]

    Gong H R 2009 Intermetallics 17 562

    [45]

    Rice J R, Thomson R 1974 Philos. Mag. 29 73

  • [1] 徐明, 徐立清, 赵海林, 李颖颖, 钟国强, 郝保龙, 马瑞瑞, 陈伟, 刘海庆, 徐国盛, 胡建生, 万宝年, EAST团队. EAST反磁剪切qmin$\approx $2条件下磁流体力学不稳定性及内部输运垒物理实验结果简述.  , 2023, 72(21): 215204. doi: 10.7498/aps.72.20230721
    [2] 李婷, 毕晓月, 孔婧文. 剪切形变下磷烯的力学和热学性能.  , 2023, 72(12): 126201. doi: 10.7498/aps.72.20230084
    [3] 方芳, 鲍麟, 童秉纲. 基于斜驻点模型的剪切层撞击壁面流动及传热特性.  , 2020, 69(21): 214401. doi: 10.7498/aps.69.20201000
    [4] 张冬冬, 谭建国, 姚霄. 入流激励下可压缩剪切层中Kelvin-Helmholtz涡的响应特性.  , 2020, 69(2): 024701. doi: 10.7498/aps.69.20190681
    [5] 刘亚琴, 杨士莪, 张海刚, 王笑寒. 变声速弹性沉积层下压缩波与剪切波的耦合影响.  , 2018, 67(23): 234303. doi: 10.7498/aps.67.20181600
    [6] 张程宾, 于程, 刘向东, 金瓯, 陈永平. 剪切流场中双重乳液稳态形变.  , 2016, 65(20): 204704. doi: 10.7498/aps.65.204704
    [7] 高英俊, 全四龙, 邓芊芊, 罗志荣, 黄创高, 林葵. 剪切应变下刃型位错的滑移机理的晶体相场模拟.  , 2015, 64(10): 106104. doi: 10.7498/aps.64.106104
    [8] 姜艳, 刘贵立. 剪切形变对硼氮掺杂碳纳米管超晶格电子结构和光学性能的影响.  , 2015, 64(14): 147304. doi: 10.7498/aps.64.147304
    [9] 徐庭栋, 刘珍君, 于鸿垚, 王凯. 拉伸试验测试金属韧性的不确定性:中温脆性和应变速率脆性.  , 2014, 63(22): 228101. doi: 10.7498/aps.63.228101
    [10] 金叶青, 姚熊亮, 庞福振, 张阿漫. 均匀流中剪切变形加筋层合板声与振动特性研究.  , 2013, 62(13): 134306. doi: 10.7498/aps.62.134306
    [11] 吴文平, 郭雅芳, 汪越胜, 徐爽. 镍基单晶高温合金界面位错网在剪切载荷作用下的演化.  , 2011, 60(5): 056802. doi: 10.7498/aps.60.056802
    [12] 张建民, 吴喜军, 黄育红, 徐可为. fcc金属层错能的EAM法计算.  , 2006, 55(1): 393-397. doi: 10.7498/aps.55.393
    [13] 简广德, 董家齐. 托卡马克等离子体中动力剪切阿尔芬波不稳定性的数值研究.  , 2005, 54(4): 1641-1647. doi: 10.7498/aps.54.1641
    [14] 何枫, 杨京龙, 沈孟育. 激波和剪切层相互作用下的超音速射流.  , 2002, 51(9): 1918-1922. doi: 10.7498/aps.51.1918
    [15] 贺凯芬. 负能模式在非线性不稳定性中的作用再探.  , 1996, 45(1): 1-12. doi: 10.7498/aps.45.1
    [16] 陈舜麟, 顾强, 王天民. Co3Ti与CoTi的晶体结构与结合能的计算及其脆性.  , 1995, 44(6): 936-942. doi: 10.7498/aps.44.936
    [17] 贺凯芬, 胡岗. 负能模式在驱动漂移波非线性不稳定性中的作用(Ⅰ)——向正能模式的转变和双稳态.  , 1993, 42(7): 1035-1041. doi: 10.7498/aps.42.1035
    [18] 贺凯芬, 胡岗. 负能模式在驱动漂移波非线性不稳定性中的作用(Ⅱ)——与正能模式交换,“回避交叉”和Hopf分岔.  , 1993, 42(7): 1042-1049. doi: 10.7498/aps.42.1042
    [19] 邢修三. 金属的断裂韧性.  , 1983, 32(10): 1255-1262. doi: 10.7498/aps.32.1255
    [20] 折晓黎, 张宏图. 片状切变型夹杂导致的脆性开裂.  , 1983, 32(2): 182-190. doi: 10.7498/aps.32.182
计量
  • 文章访问数:  5886
  • PDF下载量:  669
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-26
  • 修回日期:  2014-01-10
  • 刊出日期:  2014-04-05

/

返回文章
返回
Baidu
map