搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ga掺杂对纤锌矿TM0.125Zn0.875O(TM=Be, Mg)电子结构和光学能隙的影响

郑树文 范广涵 张涛 皮辉 俆开放

引用本文:
Citation:

Ga掺杂对纤锌矿TM0.125Zn0.875O(TM=Be, Mg)电子结构和光学能隙的影响

郑树文, 范广涵, 张涛, 皮辉, 俆开放

Effect on the electronic structures and optical bandgaps of Ga-doped wurtzite TM0.125Zn0.875O(TM=Be, Mg)

Zheng Shu-Wen, Fan Guang-Han, Zhang Tao, Pi Hui, Xu Kai-Fang
PDF
导出引用
  • 利用密度泛函理论的平面波超软赝势方法,对纤锌矿TM0.125Zn0.875O(TM=Be,Mg)合金和Ga掺杂TM0.125Zn0.875O的结构参数、能带、电子态密度和光学能隙进行计算和分析. 结果表明:TM0.125Zn0.875O掺入Ga容易实现并且结构更稳定. TM0.125Zn0.875O合金掺Ga 能获得很好的n型材料改性,能隙由导带底Ga 4s 态和价带顶O 2p 态决定. 由于Burstein-Moss移动和多体效应,Ga掺杂后的TM0.125Zn0.875O光学能隙变大,这与实验结果相一致. TM0.125Zn0.875O掺Ga材料可作透明导电薄膜应用到紫外和深紫外光电子器件中.
    The optimized structure parameters, electron density of states, energy band structures and optical bandgaps of the TM0.125Zn0.875O (TM=Be, Mg) alloys and Ga-doped TM0.125Zn0.875O are calculated and analyzed by using the ultra-soft pseudopotential approach of the plane-wave based upon density functional theory. The theoretical results show the Ga-doped TM0.125Zn0.875O materials are easily obtained and their structures are more stable. The Ga-doped TM0.125Zn0.875O are good n-type materials and their energy bandgaps are determined by Ga 4s states of the conduction band minimum and O 2p states of the valence band maximum. Compared with the TM0.125Zn0.875O alloys, the optical bandgaps of Ga-doped TM0.125Zn0.875O become wider due to the Burstein-Moss shift and many-body effects, which is consistent with previous experimental data. The Ga-doped TM0.125Zn0.875O materials are suitable as TCO films for the UV and deep UV optoelectronic device.
    • 基金项目: 国家自然科学基金(批准号:61176043)、广东省战略性新兴产业专项资金(批准号:2012A080304016)和华南师范大学青年教师培育基金(批准号:2012KJ018)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61176043), the Special Funds for Provincial Strategic and Emerging Industries Projects of Guangdong, China (Grant No. 2012A080304016), and the Youth Foundation of South China Normal University, China (Grant No. 2012KJ018).
    [1]

    Service R F 1997 Science 276 5314

    [2]
    [3]

    Decremps F, Datchi F, Saitta A M, Polian A 2003 Phys. Rev. B 68 104101

    [4]
    [5]

    Aoki T, Hatanaka Y, Look D C 2000 Appl. Phys. Lett. 76 3257

    [6]
    [7]

    Asmar R A, Ferblantier G, Mailly F, Gall-Borrut P, Foucaran A 2005 Thin Solid Films 473 49

    [8]

    Kim G, Bang J, Kim Y, Rout S K, Woo S I 2009 Appl. Phys. A 97 21

    [9]
    [10]

    Yang W, Liu Z, Peng D L, Zhang F, Huang H, Xie Y, Wu Z 2009 Appl. Surf. Sci. 255 5669

    [11]
    [12]
    [13]

    Wu F, Fang L, Pan Y J, Zhou K, Ruan H B, Liu G B, Kong C Y 2011 Thin Solid Films 520 703

    [14]
    [15]

    Huang Y H, Zhang Y, Gu Y S, Bai X D, Qi J J, Liao Q L, Liu J 2007 J. Phys. Chem. C 111 9039

    [16]
    [17]

    Khranovskyy V, Grossner U, Lazorenko V, Lashkarev G, Svensson B G, Yakimova R 2006 Superlattices Microstruct 39 275

    [18]
    [19]

    Li Z Z, Chen Z Z, Huang W, Chang S H, Ma X M, 2011 Appl. Surf. Sci. 57 8486

    [20]
    [21]

    Hsueh K P, Tun C J, Chiu H C, Huang Y P, Chi G C 2010 J. Vac. Sci. Technol. B 28 720

    [22]
    [23]

    Zhang L Q, Ye Z Z, Huang J Y, Lu B, He H P, Lu J G, Zhang Y Z, Jiang J, Zhang J, Wu K W, Zhang W G 2011 J. Alloys Compd. 509 7405

    [24]
    [25]

    Bhattacharya P, Das R R, Katiyar R S 2004 Thin Solid Films 447 564

    [26]

    Yang C, Li X M, Gao X D, Cao X, Yang R, Li Y Z 2011 Solid State Commun. 151 264

    [27]
    [28]
    [29]

    Liu W S, Chen W K, Hsueh K P 2013 J. Alloys Compd. 552 255

    [30]
    [31]

    Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park YS, Youn C J, Kim J W 2006 Appl. Phys. Lett. 88 052103

    [32]

    Ryu Y R, Lubguban J A, Lee T S, White H W, Jeong T S, Youn C J, Kim B J 2007 Appl. Phys. Lett. 90 131115

    [33]
    [34]

    Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107

    [35]
    [36]

    Zhang D L, Xu X G, Wang W, Zhang X, Yang H L, Wu Y, Ma C, Jiang Y 2012 Rare Metals 31 112

    [37]
    [38]
    [39]

    Lou J Y, Jiang X S, Xu T J, Liang D L, Jiao F J, Gao L 2012 Rare Metals 31 507

    [40]
    [41]

    Kim W J, Leem T H, Han M S, Park I M, Ryu Y R, Lee T S 2006 J. Appl. Phys. 99 096104

    [42]

    Huang H C, Gilmer G H, de la Tomas D R 1998 J. Appl. Phys. 84 3636

    [43]
    [44]

    Segall M D, Lindan P J D, Probert M 2002 J. Phys. Cond. Matt. 14 2717

    [45]
    [46]

    Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [47]
    [48]
    [49]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [50]
    [51]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [52]
    [53]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [54]
    [55]

    Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212

    [56]
    [57]

    Tang X, L H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 57 1066]

    [58]

    Su X Y, Si P P, Hou Q Y, Kong X L, Cheng W 2009 Phys. B: Condens. Matter 404 1794

    [59]
    [60]

    Yang K S, Dai Y, Huang B B 2008 Chem. Phys. Lett. 456 71

    [61]
    [62]

    Zhang Y, Shao X H, Wang C Q 2010 Acta Phys. Sin. 59 5652 (in Chinese) [张云, 邵晓红, 王治强 2010 59 5652]

    [63]
    [64]

    Yoo Y Z, Jin Z W, Chikyow T, Fukumura T, Kawasaki M, Koinuma H 2002 Appl. Phys. Lett. 81 3798

    [65]
    [66]
    [67]

    Wang A J, Li S C, Wang L Y, Liu Z 2009 Chin. Phys. B 18 1674

    [68]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [69]
    [70]

    Franz C, Giar M, Heinemann M, Czerner M, Heiliger C 2012 MRS Proceedings 1494 2013

    [71]
    [72]

    Shi L B, Li R B, Cheng S, Li M B 2009 Acta Phys. Sin. 58 6446 (in Chinese) [史力斌, 李容兵, 成爽, 李明标 2009 58 6446]

    [73]
    [74]

    Jin X L, Lou S Y, Kong D G, Li Y C, Du Z L 2006 Acta Phys. Sin. 55 4809 (in Chinese) [靳锡联, 娄世云, 孔德国, 李蕴才, 杜祖亮 2006 55 4809]

    [75]
    [76]

    Liu E K, Zhu B S, Luo J S 2003 Semiconductor Physics(Beijing: Publishing House of Electronics Industry) p111, 129 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2003 半导体物理学 (北京: 电子工业出版社) 第111, 129页]

    [77]
    [78]

    Mott N F 1961 Philos. Mag. 6 287

    [79]
    [80]

    Han T, Meng F Y, Zhang S, Cheng X M, Oh J I 2011 J. Appl. Phys. 110 063724

    [81]
    [82]
    [83]

    Burstein E 1954 Phys. Rev. 93 632

    [84]

    Moss T S 1954 Proc. Phys. Soc. London Sect. B 67 775

    [85]
  • [1]

    Service R F 1997 Science 276 5314

    [2]
    [3]

    Decremps F, Datchi F, Saitta A M, Polian A 2003 Phys. Rev. B 68 104101

    [4]
    [5]

    Aoki T, Hatanaka Y, Look D C 2000 Appl. Phys. Lett. 76 3257

    [6]
    [7]

    Asmar R A, Ferblantier G, Mailly F, Gall-Borrut P, Foucaran A 2005 Thin Solid Films 473 49

    [8]

    Kim G, Bang J, Kim Y, Rout S K, Woo S I 2009 Appl. Phys. A 97 21

    [9]
    [10]

    Yang W, Liu Z, Peng D L, Zhang F, Huang H, Xie Y, Wu Z 2009 Appl. Surf. Sci. 255 5669

    [11]
    [12]
    [13]

    Wu F, Fang L, Pan Y J, Zhou K, Ruan H B, Liu G B, Kong C Y 2011 Thin Solid Films 520 703

    [14]
    [15]

    Huang Y H, Zhang Y, Gu Y S, Bai X D, Qi J J, Liao Q L, Liu J 2007 J. Phys. Chem. C 111 9039

    [16]
    [17]

    Khranovskyy V, Grossner U, Lazorenko V, Lashkarev G, Svensson B G, Yakimova R 2006 Superlattices Microstruct 39 275

    [18]
    [19]

    Li Z Z, Chen Z Z, Huang W, Chang S H, Ma X M, 2011 Appl. Surf. Sci. 57 8486

    [20]
    [21]

    Hsueh K P, Tun C J, Chiu H C, Huang Y P, Chi G C 2010 J. Vac. Sci. Technol. B 28 720

    [22]
    [23]

    Zhang L Q, Ye Z Z, Huang J Y, Lu B, He H P, Lu J G, Zhang Y Z, Jiang J, Zhang J, Wu K W, Zhang W G 2011 J. Alloys Compd. 509 7405

    [24]
    [25]

    Bhattacharya P, Das R R, Katiyar R S 2004 Thin Solid Films 447 564

    [26]

    Yang C, Li X M, Gao X D, Cao X, Yang R, Li Y Z 2011 Solid State Commun. 151 264

    [27]
    [28]
    [29]

    Liu W S, Chen W K, Hsueh K P 2013 J. Alloys Compd. 552 255

    [30]
    [31]

    Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park YS, Youn C J, Kim J W 2006 Appl. Phys. Lett. 88 052103

    [32]

    Ryu Y R, Lubguban J A, Lee T S, White H W, Jeong T S, Youn C J, Kim B J 2007 Appl. Phys. Lett. 90 131115

    [33]
    [34]

    Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107

    [35]
    [36]

    Zhang D L, Xu X G, Wang W, Zhang X, Yang H L, Wu Y, Ma C, Jiang Y 2012 Rare Metals 31 112

    [37]
    [38]
    [39]

    Lou J Y, Jiang X S, Xu T J, Liang D L, Jiao F J, Gao L 2012 Rare Metals 31 507

    [40]
    [41]

    Kim W J, Leem T H, Han M S, Park I M, Ryu Y R, Lee T S 2006 J. Appl. Phys. 99 096104

    [42]

    Huang H C, Gilmer G H, de la Tomas D R 1998 J. Appl. Phys. 84 3636

    [43]
    [44]

    Segall M D, Lindan P J D, Probert M 2002 J. Phys. Cond. Matt. 14 2717

    [45]
    [46]

    Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [47]
    [48]
    [49]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [50]
    [51]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [52]
    [53]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [54]
    [55]

    Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212

    [56]
    [57]

    Tang X, L H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 57 1066]

    [58]

    Su X Y, Si P P, Hou Q Y, Kong X L, Cheng W 2009 Phys. B: Condens. Matter 404 1794

    [59]
    [60]

    Yang K S, Dai Y, Huang B B 2008 Chem. Phys. Lett. 456 71

    [61]
    [62]

    Zhang Y, Shao X H, Wang C Q 2010 Acta Phys. Sin. 59 5652 (in Chinese) [张云, 邵晓红, 王治强 2010 59 5652]

    [63]
    [64]

    Yoo Y Z, Jin Z W, Chikyow T, Fukumura T, Kawasaki M, Koinuma H 2002 Appl. Phys. Lett. 81 3798

    [65]
    [66]
    [67]

    Wang A J, Li S C, Wang L Y, Liu Z 2009 Chin. Phys. B 18 1674

    [68]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [69]
    [70]

    Franz C, Giar M, Heinemann M, Czerner M, Heiliger C 2012 MRS Proceedings 1494 2013

    [71]
    [72]

    Shi L B, Li R B, Cheng S, Li M B 2009 Acta Phys. Sin. 58 6446 (in Chinese) [史力斌, 李容兵, 成爽, 李明标 2009 58 6446]

    [73]
    [74]

    Jin X L, Lou S Y, Kong D G, Li Y C, Du Z L 2006 Acta Phys. Sin. 55 4809 (in Chinese) [靳锡联, 娄世云, 孔德国, 李蕴才, 杜祖亮 2006 55 4809]

    [75]
    [76]

    Liu E K, Zhu B S, Luo J S 2003 Semiconductor Physics(Beijing: Publishing House of Electronics Industry) p111, 129 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2003 半导体物理学 (北京: 电子工业出版社) 第111, 129页]

    [77]
    [78]

    Mott N F 1961 Philos. Mag. 6 287

    [79]
    [80]

    Han T, Meng F Y, Zhang S, Cheng X M, Oh J I 2011 J. Appl. Phys. 110 063724

    [81]
    [82]
    [83]

    Burstein E 1954 Phys. Rev. 93 632

    [84]

    Moss T S 1954 Proc. Phys. Soc. London Sect. B 67 775

    [85]
  • [1] 董肖. P掺杂LiNH2团簇与LiH反应机理的密度泛函理论研究及一种新储放氢机制.  , 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [2] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [3] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究.  , 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [4] 周小红, 杨卿, 邹军涛, 梁淑华. 生长条件对Ga掺杂ZnO薄膜微观结构及光致发光性能的影响.  , 2015, 64(8): 087803. doi: 10.7498/aps.64.087803
    [5] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究.  , 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [6] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [7] 郑树文, 范广涵, 何苗, 赵灵智. W掺杂对β-Ga2O3导电性能影响的理论研究.  , 2014, 63(5): 057102. doi: 10.7498/aps.63.057102
    [8] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究.  , 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [9] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变.  , 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [10] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究.  , 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [11] 沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平. Ga掺杂对ZnO纳米结构可见光发射的抑制效应.  , 2012, 61(16): 167105. doi: 10.7498/aps.61.167105
    [12] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究.  , 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [13] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究.  , 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [14] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究.  , 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [15] 刘建军. 掺Ga对ZnO电子态密度和光学性质的影响.  , 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [16] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究.  , 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [17] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性.  , 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [18] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究.  , 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [19] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究.  , 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [20] 谭明秋, 陶向明, 徐小军, 蔡建秋. 含铀化合物UAl3和USn3电子结构的密度泛函研究.  , 2003, 52(12): 3142-3149. doi: 10.7498/aps.52.3142
计量
  • 文章访问数:  6248
  • PDF下载量:  431
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-27
  • 修回日期:  2014-01-14
  • 刊出日期:  2014-04-05

/

返回文章
返回
Baidu
map