-
通过45 keV,1.01017 cm-2的Cu离子注入SiO2基底合成了嵌入式的Cu纳米颗粒,采用不同剂量的50 keV Zn离子对Cu纳米颗粒进行后续辐照,详细研究了Zn离子后续辐照对Cu纳米颗粒结构、光学性质的影响及其氧气气氛下的热演变规律. 研究结果表明,Cu和0.51017 cm-2的Zn离子顺次注入可在SiO2基底中形成Cu-Zn合金纳米颗粒,它们可以在516 nm附近引起独特的表面等离子共振(SPR)吸收峰. 后续O2气氛中450 ℃退火可以导致Cu-Zn 合金纳米颗粒分解,并在基体中形成了ZnO和Cu纳米颗粒. 研究结果还表明后续Zn离子的辐照可以有效地提高Cu纳米颗粒的抗氧化能力;同时基体中Cu 的存在也会加速Zn向样品表面的扩散,从而促进了ZnO 的形成.
-
关键词:
- 双离子注入 /
- Cu-Zn合金纳米颗粒 /
- 热稳定性 /
- Zn扩散
Cu nanoparticles (NPs) embedded in silica were synthesized by implantation of 45 keV Cu ions at a fluence of 1.01017 cm-2, and then subjected to post irradiation with 50 keV Zn ions at fluences of 0.51017 cm-2 and 1.01017 cm-2, respectively. Zn post ion implantation induced modifications in structures, optical absorption properties of Cu NPs as well as their thermal stability in oxygen ambient have been investigated in detail. Results clearly show that Cu-Zn alloy NPs could be formed in the Cu pre-implanted silica followed by Zn ion irradiation at a fluence of 0.51017 cm-2, which causes an unique surface plasmon resonance (SPR) absorption peak at about 516 nm. Subsequent annealing in oxygen atmosphere results in the decomposition of Cu-Zn alloy NPs, at 450 ℃, and thus, ZnO and Cu NPs appear in the substrate. Further increase of annealing temperature to 550 ℃ could transform all the Zn and Cu into ZnO and CuO. Moreover, results also demonstrate that introduction of Zn into SiO2 substrate could effectively suppress the oxidation of Cu NPs, meanwhile, the existence of Cu could promote thermal diffusion of Zn towards substrate surface, which enhances the oxidation of Zn. The underlying mechanism has been discussed.-
Keywords:
- sequential ion implantation /
- Cu-Zn alloy nanoparticles /
- thermal stability /
- diffusion of Zn atoms
[1] Zhao C H, Zhang B P, Shang P P 2009 Chin. Phys. B 18 5539
[2] Daniel M C, Astruc D 2004 Chem. Rev. 104 293
[3] Inouye H, Tanaka K, Tanahashi I, Hattori T, Nakatsuka H 2000 Jpn. J. Appl. Phys. 39 5132
[4] Huang Q, Zhang X D, Zhang H, Xiong S Z, Geng W D, Geng X H, Zhao Y 2010 Chin. Phys. B 19 047304
[5] Stepanov A L 2010 Rev. Adv. Mater. Sci. 26 1
[6] Liu X F, Jiang C Z, Ren F, Fu Q 2005 Acta Phys. Sin. 54 4633 (in Chinese)[刘向绯, 蒋昌忠, 任峰, 付强2005 54 4633]
[7] Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845
[8] Peña O, Pal U, Rodríguez-Fernández L, Silva-Pereyra H G, Rodríguez-Iglesias V, Cheang-Wong J C, Arenas-Alatorre J, Oliver A 2009 J. Phys. Chem. C 113 2296
[9] Mattei G, Maurizio C, Mazzoldi P, D’Acapito F, Battaglin G, Cattaruzza E, de Julián Fernández C, Sada C 2005 Phys. Rev. B 71 195418
[10] Mattei G, De Marchi G, Maurizio C, Mazzoldi P, Sads C, Bello V, Battaglin G 2003 Phys. Rev. Lett. 90 085502
[11] Zhang L, Jiang C Z, Ren F, Chen H B, Shi Y, Fu Q 2004 Acta Phys. Sin. 53 2910 (in Chinese)[张丽, 蒋昌忠, 任峰, 陈海波, 石瑛, 付强2004 53 2910]
[12] Wang J, Zhang L H, Zhang X D, Shen Y Y, Liu C L 2013 J. Alloy. Compd. 549 231
[13] Tang Q G, Meng J P, Liang J S, Nie L, Li Y X 2010 J. Alloy. Compd. 491 242
[14] Xi J Y, Wang Z F, Lu G X 2002 Appl. Catal. A 225 77
[15] Stepanov A L, Zhikharev V A, Hole D E, Townsend P D, Khaibullin I B 2000 Nucl. Instrum. Methods Phys. Res. B 166-167 26
[16] Gnaser H, Brodyanski A, Reuscher B 2008 Surf. Interface Anal. 40 1415
[17] Zhang X D, Xi J F, Shen Y Y, Zhang L H, Zhu F, Wang Z, Xue Y H, Liu C L 2011 Opt. Mater. 33 570
[18] Shen Y Y, Zhang X D, Zhang D C, Xue Y H, Zhang L H, Liu C L 2011 Mater. Lett. 65 2966
[19] Wang Y H, Li H Q, Lu J D, Wang R W 2011 Chin. Phys. Lett. 28 116101
[20] Marshall C D, Speth J A, Payne S A 1997 J. Non-Cryst. Solids 212 59
[21] Hume-Rothery W, Mabbott G W, Evans K M C 1934 Phil. Trans. R. Soc. 233 1
[22] Pickering H W, Wagner C 1967 J. Electrochem. Soc. 114 698
[23] Yazawa A, Gubčová A 1970 Trans. JIM 11 419
[24] Amekura H, Kono K, Takeda Y, Kishimoto N 2005 Appl. Phys. Lett. 87 153105
[25] Amekura H, Umeda N, Sakuma Y, Plaksin O A, Takeda Y, Kishimoto N, Buchal C 2006 Appl. Phys. Lett. 88 153119
[26] Sun X F, Wei C P, Li Q Y 2009 Acta Phys. Sin. 58 5816 (in Chinese)[孙小飞, 魏长平, 李启源2009 58 5816]
[27] Volkert C A, Minor A M 2007 MRS Bull. 32 389
[28] Chao L C, Lin S J, Chang W C 2010 Nucl. Instrum. Methods Phys. Res. B 268 1581
-
[1] Zhao C H, Zhang B P, Shang P P 2009 Chin. Phys. B 18 5539
[2] Daniel M C, Astruc D 2004 Chem. Rev. 104 293
[3] Inouye H, Tanaka K, Tanahashi I, Hattori T, Nakatsuka H 2000 Jpn. J. Appl. Phys. 39 5132
[4] Huang Q, Zhang X D, Zhang H, Xiong S Z, Geng W D, Geng X H, Zhao Y 2010 Chin. Phys. B 19 047304
[5] Stepanov A L 2010 Rev. Adv. Mater. Sci. 26 1
[6] Liu X F, Jiang C Z, Ren F, Fu Q 2005 Acta Phys. Sin. 54 4633 (in Chinese)[刘向绯, 蒋昌忠, 任峰, 付强2005 54 4633]
[7] Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845
[8] Peña O, Pal U, Rodríguez-Fernández L, Silva-Pereyra H G, Rodríguez-Iglesias V, Cheang-Wong J C, Arenas-Alatorre J, Oliver A 2009 J. Phys. Chem. C 113 2296
[9] Mattei G, Maurizio C, Mazzoldi P, D’Acapito F, Battaglin G, Cattaruzza E, de Julián Fernández C, Sada C 2005 Phys. Rev. B 71 195418
[10] Mattei G, De Marchi G, Maurizio C, Mazzoldi P, Sads C, Bello V, Battaglin G 2003 Phys. Rev. Lett. 90 085502
[11] Zhang L, Jiang C Z, Ren F, Chen H B, Shi Y, Fu Q 2004 Acta Phys. Sin. 53 2910 (in Chinese)[张丽, 蒋昌忠, 任峰, 陈海波, 石瑛, 付强2004 53 2910]
[12] Wang J, Zhang L H, Zhang X D, Shen Y Y, Liu C L 2013 J. Alloy. Compd. 549 231
[13] Tang Q G, Meng J P, Liang J S, Nie L, Li Y X 2010 J. Alloy. Compd. 491 242
[14] Xi J Y, Wang Z F, Lu G X 2002 Appl. Catal. A 225 77
[15] Stepanov A L, Zhikharev V A, Hole D E, Townsend P D, Khaibullin I B 2000 Nucl. Instrum. Methods Phys. Res. B 166-167 26
[16] Gnaser H, Brodyanski A, Reuscher B 2008 Surf. Interface Anal. 40 1415
[17] Zhang X D, Xi J F, Shen Y Y, Zhang L H, Zhu F, Wang Z, Xue Y H, Liu C L 2011 Opt. Mater. 33 570
[18] Shen Y Y, Zhang X D, Zhang D C, Xue Y H, Zhang L H, Liu C L 2011 Mater. Lett. 65 2966
[19] Wang Y H, Li H Q, Lu J D, Wang R W 2011 Chin. Phys. Lett. 28 116101
[20] Marshall C D, Speth J A, Payne S A 1997 J. Non-Cryst. Solids 212 59
[21] Hume-Rothery W, Mabbott G W, Evans K M C 1934 Phil. Trans. R. Soc. 233 1
[22] Pickering H W, Wagner C 1967 J. Electrochem. Soc. 114 698
[23] Yazawa A, Gubčová A 1970 Trans. JIM 11 419
[24] Amekura H, Kono K, Takeda Y, Kishimoto N 2005 Appl. Phys. Lett. 87 153105
[25] Amekura H, Umeda N, Sakuma Y, Plaksin O A, Takeda Y, Kishimoto N, Buchal C 2006 Appl. Phys. Lett. 88 153119
[26] Sun X F, Wei C P, Li Q Y 2009 Acta Phys. Sin. 58 5816 (in Chinese)[孙小飞, 魏长平, 李启源2009 58 5816]
[27] Volkert C A, Minor A M 2007 MRS Bull. 32 389
[28] Chao L C, Lin S J, Chang W C 2010 Nucl. Instrum. Methods Phys. Res. B 268 1581
计量
- 文章访问数: 6492
- PDF下载量: 647
- 被引次数: 0