-
考虑1-3型垂直异质铁电P(VDF-TrFE)基复合薄膜结构,利用非线性的热力学理论分析和讨论了平面外应变对复合薄膜电热性能的调控作用. 结果表明,在施加的垂直电场下,平面外应变可以有效地调控电极化、热释电系数、绝热温差等铁电、电热性能. 通过合理的调控平面外应变可以在很大的温度区域范围内获得比纯平面外延薄膜结构更高的绝热温差. 研究结果预示着垂直异质P(VDF-TrFE)基复合薄膜结构在一定的工作温度范围内具有优异的电热性能,在微电源、光通信二极管、红外传感器等微型元件方面有着广泛的应用前景.
-
关键词:
- 电热效应 /
- 平面外应变 /
- P(VDF-TrFE)复合薄膜 /
- 绝热温差
Considering the boundary conditions of 1-3-type P(VDF-TrFE) composite ferroelectric film, the effect of out-of-plane strain on the electrocaloric performances of vertical heteroepitaxial film is calculated by the nonlinear thermodynamic theory. The results indicate that the out-of-plane strain can effectively regulate the ferroelectric and electrocaloric performances including the polarization, electrocaloric coefficient and adiabatic temperature change under the action of vertical electric field. In a wide temperature range, the vertical heteroepitaxial film can present higher adiabatic temperature change than the pure P(VDF-TrFE) film by controlling the out-of-plane strain. This indicates that the vertical composite heteroepitaxial film with excellent electrocaloric performances will have potential applications in the microelectronic devices such as micropowers, optical communication diodes and infrared sensors.-
Keywords:
- electrocaloric effect /
- out-of-plane strain /
- P(VDF-TrFE) composite film /
- adiabatic temperature change
[1] Lu S G, Zhang Q M 2009 Adv. Mater. 21 1983
[2] Qiu J H, Jiang Q 2009 J. Appl. Phys. 105 034110
[3] Lisenkov S, Ponomareva I 2009 Phys. Rev. B 80 140102
[4] Zhang Q M, Li H F, Poh M, Xia F, Cheng Z Y, Xu H S, Chen H 2002 Nature 419 284
[5] Maksymovych P, Jesse S, Yu P, Ramesh R, Baddorf A P, Kalinin S V 2009 Science 324 1421
[6] Ahn C H, Rabe K M, Triscone J M 2004 Science 303 488
[7] Zhao L, Shen M L, Cao W W 2012 Chin. Phys. Lett. 29 047702
[8] Zhang C H, Xu Z, Gao J J, Yao X 2011 Chin. Phys. B 20 027701
[9] Zhang X, Wang J B, Li B, Zhong X L, Lou X J, Zhou Y C 2011 J. Appl. Phys. 109 126102
[10] Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270
[11] Zeng H R, Yu H F, Chu R Q, Li G R, Yin Q R, Tang X G 2005 Acta Phys. Sin. 54 1437 (in Chinese) [曾华荣, 余寒峰, 初瑞清, 李国荣, 殷庆瑞, 唐新桂 2005 54 1437]
[12] Wen J H, Yang Q, Cao J X, Zhou Y C 2013 Acta Phys. Sin. 62 067701 (in Chinese) [文娟辉, 杨琼, 曹觉先, 周益春 2013 62 067701]
[13] Zhou Z D, Zhang C Z, Zhang Y 2010 Acta Phys. Sin. 59 6620 (in Chinese) [周志东, 张春祖, 张颖 2010 59 6620]
[14] Qiu J H, Ding J N, Yuan N Y, Wang X Q 2013 Chin. Phys. B 22 017701
[15] Qiu J H, Ding J N, Yuan N Y, Wang X Q 2012 Chin. Phys. B 21 097701
[16] Liu P F, Wang J L, Meng X J, Yang J, Dkhil B, Chu J H 2010 New J. Phys. 12 023035
[17] Lee M K, Lee J 2013 Cryst. Growth Des. 13 671
[18] Chen X, Liu L, Liu S Z, Cui Y S, Chen X Z, Ge H X, Shen Q D 2013 Appl. Phys. Lett. 102 063103
[19] Qiu J H, Ding J N, Yuan N Y, Wang Q X 2013 Commun. Theor. Phys. 59 117
[20] Rozic B, Kutnjak Z, Neese B, Lu S G, Zhang Q M 2010 Phase Transit. 83 819
[21] Neese B, Chu B J, Lu S G, Wang Y, Furman E, Zhang Q M 2008 Science 321 821
[22] Qiu J H, Ding J N, Yuan N Y, Wang X Q, Yang J 2011 Eur. Phys. J. B 84 25
[23] Li B, Ren W J, Wang X W, Meng H, Liu X G, Wang Z J, Zhang Z D 2010 Appl. Phys. Lett. 96 102903
[24] Bai G, Gong X, Liu Z G, Xia Y D, Yin J 2012 J. Appl. Phys. 112 114121
[25] Wu H P, Xu B, Liu A P, Chai G Z 2012 J. Phys. D: Appl. Phys. 45 455306
[26] Pertsev N A, Zembilgotov A G, Tagantsev A K 1998 Phys. Rev. Lett. 80 1988
[27] Liu P F, Meng X J, Chu J H, Geneste G, Dkhil B 2009 J. Appl. Phys. 105 114105
[28] Akcay G, Alpay S P, Mantese J V, Rosetti G A 2007 Appl. Phys. Lett. 90 252909
-
[1] Lu S G, Zhang Q M 2009 Adv. Mater. 21 1983
[2] Qiu J H, Jiang Q 2009 J. Appl. Phys. 105 034110
[3] Lisenkov S, Ponomareva I 2009 Phys. Rev. B 80 140102
[4] Zhang Q M, Li H F, Poh M, Xia F, Cheng Z Y, Xu H S, Chen H 2002 Nature 419 284
[5] Maksymovych P, Jesse S, Yu P, Ramesh R, Baddorf A P, Kalinin S V 2009 Science 324 1421
[6] Ahn C H, Rabe K M, Triscone J M 2004 Science 303 488
[7] Zhao L, Shen M L, Cao W W 2012 Chin. Phys. Lett. 29 047702
[8] Zhang C H, Xu Z, Gao J J, Yao X 2011 Chin. Phys. B 20 027701
[9] Zhang X, Wang J B, Li B, Zhong X L, Lou X J, Zhou Y C 2011 J. Appl. Phys. 109 126102
[10] Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270
[11] Zeng H R, Yu H F, Chu R Q, Li G R, Yin Q R, Tang X G 2005 Acta Phys. Sin. 54 1437 (in Chinese) [曾华荣, 余寒峰, 初瑞清, 李国荣, 殷庆瑞, 唐新桂 2005 54 1437]
[12] Wen J H, Yang Q, Cao J X, Zhou Y C 2013 Acta Phys. Sin. 62 067701 (in Chinese) [文娟辉, 杨琼, 曹觉先, 周益春 2013 62 067701]
[13] Zhou Z D, Zhang C Z, Zhang Y 2010 Acta Phys. Sin. 59 6620 (in Chinese) [周志东, 张春祖, 张颖 2010 59 6620]
[14] Qiu J H, Ding J N, Yuan N Y, Wang X Q 2013 Chin. Phys. B 22 017701
[15] Qiu J H, Ding J N, Yuan N Y, Wang X Q 2012 Chin. Phys. B 21 097701
[16] Liu P F, Wang J L, Meng X J, Yang J, Dkhil B, Chu J H 2010 New J. Phys. 12 023035
[17] Lee M K, Lee J 2013 Cryst. Growth Des. 13 671
[18] Chen X, Liu L, Liu S Z, Cui Y S, Chen X Z, Ge H X, Shen Q D 2013 Appl. Phys. Lett. 102 063103
[19] Qiu J H, Ding J N, Yuan N Y, Wang Q X 2013 Commun. Theor. Phys. 59 117
[20] Rozic B, Kutnjak Z, Neese B, Lu S G, Zhang Q M 2010 Phase Transit. 83 819
[21] Neese B, Chu B J, Lu S G, Wang Y, Furman E, Zhang Q M 2008 Science 321 821
[22] Qiu J H, Ding J N, Yuan N Y, Wang X Q, Yang J 2011 Eur. Phys. J. B 84 25
[23] Li B, Ren W J, Wang X W, Meng H, Liu X G, Wang Z J, Zhang Z D 2010 Appl. Phys. Lett. 96 102903
[24] Bai G, Gong X, Liu Z G, Xia Y D, Yin J 2012 J. Appl. Phys. 112 114121
[25] Wu H P, Xu B, Liu A P, Chai G Z 2012 J. Phys. D: Appl. Phys. 45 455306
[26] Pertsev N A, Zembilgotov A G, Tagantsev A K 1998 Phys. Rev. Lett. 80 1988
[27] Liu P F, Meng X J, Chu J H, Geneste G, Dkhil B 2009 J. Appl. Phys. 105 114105
[28] Akcay G, Alpay S P, Mantese J V, Rosetti G A 2007 Appl. Phys. Lett. 90 252909
计量
- 文章访问数: 6018
- PDF下载量: 353
- 被引次数: 0