搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面外应变对1-3型垂直异质P(VDF-TrFE)基复合薄膜电热性能的调控

张杭波 吴化平 周挺 张征 柴国钟

引用本文:
Citation:

面外应变对1-3型垂直异质P(VDF-TrFE)基复合薄膜电热性能的调控

张杭波, 吴化平, 周挺, 张征, 柴国钟

The effect of out-of-plane strain on the electrocaloric performances of P(VDF-TrFE) vertical heteroepitaxial film

Zhang Hang-Bo, Wu Hua-Ping, Zhou Ting, Zhang Zheng, Chai Guo-Zhong
PDF
导出引用
  • 考虑1-3型垂直异质铁电P(VDF-TrFE)基复合薄膜结构,利用非线性的热力学理论分析和讨论了平面外应变对复合薄膜电热性能的调控作用. 结果表明,在施加的垂直电场下,平面外应变可以有效地调控电极化、热释电系数、绝热温差等铁电、电热性能. 通过合理的调控平面外应变可以在很大的温度区域范围内获得比纯平面外延薄膜结构更高的绝热温差. 研究结果预示着垂直异质P(VDF-TrFE)基复合薄膜结构在一定的工作温度范围内具有优异的电热性能,在微电源、光通信二极管、红外传感器等微型元件方面有着广泛的应用前景.
    Considering the boundary conditions of 1-3-type P(VDF-TrFE) composite ferroelectric film, the effect of out-of-plane strain on the electrocaloric performances of vertical heteroepitaxial film is calculated by the nonlinear thermodynamic theory. The results indicate that the out-of-plane strain can effectively regulate the ferroelectric and electrocaloric performances including the polarization, electrocaloric coefficient and adiabatic temperature change under the action of vertical electric field. In a wide temperature range, the vertical heteroepitaxial film can present higher adiabatic temperature change than the pure P(VDF-TrFE) film by controlling the out-of-plane strain. This indicates that the vertical composite heteroepitaxial film with excellent electrocaloric performances will have potential applications in the microelectronic devices such as micropowers, optical communication diodes and infrared sensors.
    • 基金项目: 国家自然科学基金(批准号:11002126,11372280,51205355)和浙江省自然科学基金(批准号:Y6100425)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11002126, 11372280, 51205355) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. Y6100425).
    [1]

    Lu S G, Zhang Q M 2009 Adv. Mater. 21 1983

    [2]

    Qiu J H, Jiang Q 2009 J. Appl. Phys. 105 034110

    [3]

    Lisenkov S, Ponomareva I 2009 Phys. Rev. B 80 140102

    [4]

    Zhang Q M, Li H F, Poh M, Xia F, Cheng Z Y, Xu H S, Chen H 2002 Nature 419 284

    [5]

    Maksymovych P, Jesse S, Yu P, Ramesh R, Baddorf A P, Kalinin S V 2009 Science 324 1421

    [6]

    Ahn C H, Rabe K M, Triscone J M 2004 Science 303 488

    [7]

    Zhao L, Shen M L, Cao W W 2012 Chin. Phys. Lett. 29 047702

    [8]

    Zhang C H, Xu Z, Gao J J, Yao X 2011 Chin. Phys. B 20 027701

    [9]

    Zhang X, Wang J B, Li B, Zhong X L, Lou X J, Zhou Y C 2011 J. Appl. Phys. 109 126102

    [10]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270

    [11]

    Zeng H R, Yu H F, Chu R Q, Li G R, Yin Q R, Tang X G 2005 Acta Phys. Sin. 54 1437 (in Chinese) [曾华荣, 余寒峰, 初瑞清, 李国荣, 殷庆瑞, 唐新桂 2005 54 1437]

    [12]

    Wen J H, Yang Q, Cao J X, Zhou Y C 2013 Acta Phys. Sin. 62 067701 (in Chinese) [文娟辉, 杨琼, 曹觉先, 周益春 2013 62 067701]

    [13]

    Zhou Z D, Zhang C Z, Zhang Y 2010 Acta Phys. Sin. 59 6620 (in Chinese) [周志东, 张春祖, 张颖 2010 59 6620]

    [14]

    Qiu J H, Ding J N, Yuan N Y, Wang X Q 2013 Chin. Phys. B 22 017701

    [15]

    Qiu J H, Ding J N, Yuan N Y, Wang X Q 2012 Chin. Phys. B 21 097701

    [16]

    Liu P F, Wang J L, Meng X J, Yang J, Dkhil B, Chu J H 2010 New J. Phys. 12 023035

    [17]

    Lee M K, Lee J 2013 Cryst. Growth Des. 13 671

    [18]

    Chen X, Liu L, Liu S Z, Cui Y S, Chen X Z, Ge H X, Shen Q D 2013 Appl. Phys. Lett. 102 063103

    [19]

    Qiu J H, Ding J N, Yuan N Y, Wang Q X 2013 Commun. Theor. Phys. 59 117

    [20]

    Rozic B, Kutnjak Z, Neese B, Lu S G, Zhang Q M 2010 Phase Transit. 83 819

    [21]

    Neese B, Chu B J, Lu S G, Wang Y, Furman E, Zhang Q M 2008 Science 321 821

    [22]

    Qiu J H, Ding J N, Yuan N Y, Wang X Q, Yang J 2011 Eur. Phys. J. B 84 25

    [23]

    Li B, Ren W J, Wang X W, Meng H, Liu X G, Wang Z J, Zhang Z D 2010 Appl. Phys. Lett. 96 102903

    [24]

    Bai G, Gong X, Liu Z G, Xia Y D, Yin J 2012 J. Appl. Phys. 112 114121

    [25]

    Wu H P, Xu B, Liu A P, Chai G Z 2012 J. Phys. D: Appl. Phys. 45 455306

    [26]

    Pertsev N A, Zembilgotov A G, Tagantsev A K 1998 Phys. Rev. Lett. 80 1988

    [27]

    Liu P F, Meng X J, Chu J H, Geneste G, Dkhil B 2009 J. Appl. Phys. 105 114105

    [28]

    Akcay G, Alpay S P, Mantese J V, Rosetti G A 2007 Appl. Phys. Lett. 90 252909

  • [1]

    Lu S G, Zhang Q M 2009 Adv. Mater. 21 1983

    [2]

    Qiu J H, Jiang Q 2009 J. Appl. Phys. 105 034110

    [3]

    Lisenkov S, Ponomareva I 2009 Phys. Rev. B 80 140102

    [4]

    Zhang Q M, Li H F, Poh M, Xia F, Cheng Z Y, Xu H S, Chen H 2002 Nature 419 284

    [5]

    Maksymovych P, Jesse S, Yu P, Ramesh R, Baddorf A P, Kalinin S V 2009 Science 324 1421

    [6]

    Ahn C H, Rabe K M, Triscone J M 2004 Science 303 488

    [7]

    Zhao L, Shen M L, Cao W W 2012 Chin. Phys. Lett. 29 047702

    [8]

    Zhang C H, Xu Z, Gao J J, Yao X 2011 Chin. Phys. B 20 027701

    [9]

    Zhang X, Wang J B, Li B, Zhong X L, Lou X J, Zhou Y C 2011 J. Appl. Phys. 109 126102

    [10]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270

    [11]

    Zeng H R, Yu H F, Chu R Q, Li G R, Yin Q R, Tang X G 2005 Acta Phys. Sin. 54 1437 (in Chinese) [曾华荣, 余寒峰, 初瑞清, 李国荣, 殷庆瑞, 唐新桂 2005 54 1437]

    [12]

    Wen J H, Yang Q, Cao J X, Zhou Y C 2013 Acta Phys. Sin. 62 067701 (in Chinese) [文娟辉, 杨琼, 曹觉先, 周益春 2013 62 067701]

    [13]

    Zhou Z D, Zhang C Z, Zhang Y 2010 Acta Phys. Sin. 59 6620 (in Chinese) [周志东, 张春祖, 张颖 2010 59 6620]

    [14]

    Qiu J H, Ding J N, Yuan N Y, Wang X Q 2013 Chin. Phys. B 22 017701

    [15]

    Qiu J H, Ding J N, Yuan N Y, Wang X Q 2012 Chin. Phys. B 21 097701

    [16]

    Liu P F, Wang J L, Meng X J, Yang J, Dkhil B, Chu J H 2010 New J. Phys. 12 023035

    [17]

    Lee M K, Lee J 2013 Cryst. Growth Des. 13 671

    [18]

    Chen X, Liu L, Liu S Z, Cui Y S, Chen X Z, Ge H X, Shen Q D 2013 Appl. Phys. Lett. 102 063103

    [19]

    Qiu J H, Ding J N, Yuan N Y, Wang Q X 2013 Commun. Theor. Phys. 59 117

    [20]

    Rozic B, Kutnjak Z, Neese B, Lu S G, Zhang Q M 2010 Phase Transit. 83 819

    [21]

    Neese B, Chu B J, Lu S G, Wang Y, Furman E, Zhang Q M 2008 Science 321 821

    [22]

    Qiu J H, Ding J N, Yuan N Y, Wang X Q, Yang J 2011 Eur. Phys. J. B 84 25

    [23]

    Li B, Ren W J, Wang X W, Meng H, Liu X G, Wang Z J, Zhang Z D 2010 Appl. Phys. Lett. 96 102903

    [24]

    Bai G, Gong X, Liu Z G, Xia Y D, Yin J 2012 J. Appl. Phys. 112 114121

    [25]

    Wu H P, Xu B, Liu A P, Chai G Z 2012 J. Phys. D: Appl. Phys. 45 455306

    [26]

    Pertsev N A, Zembilgotov A G, Tagantsev A K 1998 Phys. Rev. Lett. 80 1988

    [27]

    Liu P F, Meng X J, Chu J H, Geneste G, Dkhil B 2009 J. Appl. Phys. 105 114105

    [28]

    Akcay G, Alpay S P, Mantese J V, Rosetti G A 2007 Appl. Phys. Lett. 90 252909

  • [1] 白刚, 韩宇航, 高存法. (111)取向无铅K0.5Na0.5NbO3外延薄膜的相变和电卡效应: 外应力与错配应变效应.  , 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [2] 李会华, 张嘉辉, 余森江, 卢晨曦, 李领伟. 柔性基周期性厚度梯度薄膜的应变效应.  , 2021, 70(1): 016801. doi: 10.7498/aps.70.20201008
    [3] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能.  , 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [4] 郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根. 磁热效应材料的研究进展.  , 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [5] 陈桂波, 张佳佳, 王超群, 毕娟. 一种基于激光辐照热效应的薄膜参数反演方法.  , 2016, 65(12): 124401. doi: 10.7498/aps.65.124401
    [6] 王歆钰, 储瑞江, 魏胜男, 董正超, 仲崇贵, 曹海霞. 应力作用下EuTiO3铁电薄膜电热效应的唯象理论研究.  , 2015, 64(11): 117701. doi: 10.7498/aps.64.117701
    [7] 张岩, 董刚, 杨银堂, 王宁, 王凤娟, 刘晓贤. 考虑自热效应的互连线功耗优化模型.  , 2013, 62(1): 016601. doi: 10.7498/aps.62.016601
    [8] 胡靖宇, 毛腾飞, 豆福全, 赵清. 复合绝热通道技术在谐相互作用调制的Landau-Zener模型中的应用.  , 2013, 62(17): 170303. doi: 10.7498/aps.62.170303
    [9] 曹磊, 刘红侠. 新型SOANN埋层SOI器件的自加热效应研究.  , 2012, 61(17): 177301. doi: 10.7498/aps.61.177301
    [10] 范平, 蔡兆坤, 郑壮豪, 张东平, 蔡兴民, 陈天宝. Bi-Sb-Te基热电薄膜温差电池离子束溅射制备与表征.  , 2011, 60(9): 098402. doi: 10.7498/aps.60.098402
    [11] 姚洪斌, 郑雨军. NaI分子的非绝热效应.  , 2011, 60(12): 128201. doi: 10.7498/aps.60.128201
    [12] 施卫, 马湘蓉, 薛红. 半绝缘GaAs光电导开关的瞬态热效应.  , 2010, 59(8): 5700-5705. doi: 10.7498/aps.59.5700
    [13] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析.  , 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [14] 董浩, 任敏, 张磊, 邓宁, 陈培毅. 电流驱动磁化翻转中的热效应.  , 2009, 58(10): 7176-7182. doi: 10.7498/aps.58.7176
    [15] 林子扬, 项 颖, 徐则达, 李宇新. 相位延迟法液晶沿面排列瞬态热效应.  , 1999, 48(7): 1297-1301. doi: 10.7498/aps.48.1297
    [16] 张建华, 孟庆苗, 李传安. 广义球对称带电蒸发黑洞的量子热效应和非热效应.  , 1996, 45(2): 177-184. doi: 10.7498/aps.45.177
    [17] 罗志强, 赵峥. 变加速直线运动黑洞的量子热效应.  , 1993, 42(3): 506-512. doi: 10.7498/aps.42.506
    [18] 黄国松, 张国轩, 顾绍庭, 顾根才, 朱从善. 玻璃板条激光器的热效应.  , 1990, 39(10): 1563-1569. doi: 10.7498/aps.39.1563
    [19] 张文兴, 程先安, 王绪威, 王荫君. 非晶态软磁薄膜Fe90-xCoxZr10的平面霍耳效应和磁阻效应.  , 1987, 36(7): 945-950. doi: 10.7498/aps.36.945
    [20] 沈鸿元. 正交晶系YAP晶体的热效应.  , 1981, 30(8): 1075-1099. doi: 10.7498/aps.30.1075
计量
  • 文章访问数:  6018
  • PDF下载量:  353
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-08
  • 修回日期:  2013-09-26
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map