-
为了增强完美吸波体的吸波性能,提出了一种高Q值超薄完美吸波体的设计方法. 该方法将基片集成波导技术与一般完美吸波体设计方法有机结合,通过合理添加金属过孔实现了高Q值的完美吸波体设计. 利用该方法设计出了厚度0.0065λ、半波功率带宽5.8%的完美吸波体,其吸波率Q值为33.9,比普通完美吸波体吸波率Q值提升了20%以上;其1.5和3 dBsm的雷达散射截面缩减Q值分别提高了54%和67%以上;同时该方法消除了传统设计中的频率偏移问题. 实测与仿真结果表明所设计的吸波体具有高Q值特征,也具有良好的雷达散射截面缩减效果,散射截面缩减最高达14 dBsm. 仿真和实测验证了设计方法的可靠性.A novel method to design an ultra-thin perfect metamaterial absorber (PMA) with high quality factor (Q-factor) at microwave frequencies is proposed to improve the absorption performance. The PMA achieves a high Q-factor by appropriately loading the metal cavity based on the substrate integrated waveguide (SIW) technology and the common PMA. An ultrathin absorber with a thickness of 0.0065λ and a full-width at half-maximum of 5.8% is designed. The Q-factor of absorptivity of the absorber is 33.9, which is enhanced by 20% compared with that of the conventional PMA. Meanwhile its Q-factors for radar cross section (RCS) reductions of 1.5 and 3 dBsm respectively increase 54% and 67% higher than those of the conventional PMA. The measured results show that the proposed SIW-PMA eliminates the frequency drift between the infinite periodic array and the finite periodic array, which occurs in the conventional design process. The simulated and measured results show that the proposed PMA has high Q-factor of absorptivity and excellent effect of RCS reduction. Its RCS reduction can reach a maximum value of 14.1 dBsm at the response frequency.
-
Keywords:
- substrate integrated waveguide technology /
- frequency shift /
- absorptivity /
- radar cross section
[1] Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402
[2] Li H, Yuan L H, Zhou B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909
[3] Gu C, Qu S B, Pei Z, Zhou H, Wang J 2010 Progr. Electromagnet. Lett. 17 171
[4] Luo H, Cheng Y Z, Gong R Z 2011 Eur. Phys. J. B 81 387
[5] Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 06370
[6] Li S J, Cao X Y, Gao J, Zheng Q R, Zhao Y, Yang Q 2013 Acta Phys. Sin. 62 194101 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群 2013 62 194101]
[7] Cheng Y Z, Nie Y, Gong R Z 2013 Opt. Laser Tech. 48 415
[8] Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X 2012 J. Appl. Phys. 111 044902
[9] Ding F, Cui Y X, Ge X C, Jin Y, He S L 2012 Appl. Phys. Lett. 100 103506
[10] Pham V T, Park J W, Vu D L, Zheng H Y, Rhee J Y, Kim K W, Lee Y P 2013 Adv. Nat. Sci.:Nanosci. Nanotechnol. 4 015001
[11] Liu Y H, Fang S L, Gu S, Zhao X P 2013 Acta Phys. Sin. 62 134102 (in Chinese) [刘亚红, 方石磊, 顾帅, 赵晓鹏 2013 62 134102]
[12] Chen S B, Wen J H, Wang G, Wen X S 2013 Chin. Phys. B 22 074301
[13] Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 2327
[14] Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 62 064103]
[15] Li S J, Cao X Y, Gao J, Liu T, Yang H H, Li W Q 2013 Acta Phys. Sin. 62 124101 (in Chinese) [李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强 2013 62 124101]
[16] Qi N N, Gong S X, Zhang P F, Liu J F 2008 Microw. Opt. Tech. Lett. 50 3023
[17] Luo G Q, Hong W, Lai Q H, Sun L L 2008 IET Microw. Antennas Propag. 2 23
[18] Xu R R, Zong Z Y, Yang G, Wu W 2008 Microw. Opt. Tech. Lett. 50 3149
[19] Winkler S A, Hong W, Maurizio B, Wu K 2010 IEEE Trans. Antennas Propag. 58 1202
[20] Luo G Q, Hong W, Tang H J, Chen J X, Yin X X, Wu K 2011 IEEE Trans. Antennas Propag. 55 92
[21] Tarek D, Wu K 2013 J. Univ. Electron. Sci. Tech. China 42 171
[22] Zuo Y, Rashid A K, Shen Z X, Feng Y J 2012 IEEE Antennas and Wireless Propag. 11 297
[23] Dong Y, Itoh T 2011 IEEE Trans. Antennas Propag. 59 767
-
[1] Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402
[2] Li H, Yuan L H, Zhou B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909
[3] Gu C, Qu S B, Pei Z, Zhou H, Wang J 2010 Progr. Electromagnet. Lett. 17 171
[4] Luo H, Cheng Y Z, Gong R Z 2011 Eur. Phys. J. B 81 387
[5] Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 06370
[6] Li S J, Cao X Y, Gao J, Zheng Q R, Zhao Y, Yang Q 2013 Acta Phys. Sin. 62 194101 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群 2013 62 194101]
[7] Cheng Y Z, Nie Y, Gong R Z 2013 Opt. Laser Tech. 48 415
[8] Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X 2012 J. Appl. Phys. 111 044902
[9] Ding F, Cui Y X, Ge X C, Jin Y, He S L 2012 Appl. Phys. Lett. 100 103506
[10] Pham V T, Park J W, Vu D L, Zheng H Y, Rhee J Y, Kim K W, Lee Y P 2013 Adv. Nat. Sci.:Nanosci. Nanotechnol. 4 015001
[11] Liu Y H, Fang S L, Gu S, Zhao X P 2013 Acta Phys. Sin. 62 134102 (in Chinese) [刘亚红, 方石磊, 顾帅, 赵晓鹏 2013 62 134102]
[12] Chen S B, Wen J H, Wang G, Wen X S 2013 Chin. Phys. B 22 074301
[13] Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 2327
[14] Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 62 064103]
[15] Li S J, Cao X Y, Gao J, Liu T, Yang H H, Li W Q 2013 Acta Phys. Sin. 62 124101 (in Chinese) [李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强 2013 62 124101]
[16] Qi N N, Gong S X, Zhang P F, Liu J F 2008 Microw. Opt. Tech. Lett. 50 3023
[17] Luo G Q, Hong W, Lai Q H, Sun L L 2008 IET Microw. Antennas Propag. 2 23
[18] Xu R R, Zong Z Y, Yang G, Wu W 2008 Microw. Opt. Tech. Lett. 50 3149
[19] Winkler S A, Hong W, Maurizio B, Wu K 2010 IEEE Trans. Antennas Propag. 58 1202
[20] Luo G Q, Hong W, Tang H J, Chen J X, Yin X X, Wu K 2011 IEEE Trans. Antennas Propag. 55 92
[21] Tarek D, Wu K 2013 J. Univ. Electron. Sci. Tech. China 42 171
[22] Zuo Y, Rashid A K, Shen Z X, Feng Y J 2012 IEEE Antennas and Wireless Propag. 11 297
[23] Dong Y, Itoh T 2011 IEEE Trans. Antennas Propag. 59 767
计量
- 文章访问数: 6063
- PDF下载量: 567
- 被引次数: 0