-
采用分子动力学方法对低能(0.5–50.0 eV)氢粒子 与钨表面的相互作用进行了模拟研究.研究发现, 当氢粒子垂直入射, 能量为0.5–20.0 eV时, 粒子滞留在钨内部的概率急速增加, 在整个模拟能量区间内, 发生反射过程的概率逐渐减少, 但反射过程始终占主导. 改变粒子的入射角度, 在某些能量范围内滞留概率虽有所增加, 但氢原子被反射现象仍然占主导. 通过进一步观察低能氢粒子在钨块内的入射深度和能量变化, 计算出其在钨块中的能量沉积分布. 这些结果对理解聚变反应中 钨材料的选用优势以及氢或氢同位素滞留有重大意义. 此外, 在所研究的能量范围内, 分子动力学方法的模拟结果与以二体理论为基础的TRIM程序的模拟结果之间有明显差异, 说明传统的二体碰撞理论不能很好地描述低能碰撞问题.Molecular dynamics simulations are performed to study the diffusion behavior of low-energy hydrogen atoms in bcc tungsten (001). The simulation results show that when the energy of vertically incident hydrogen atoms is in a range of 0–20.0 eV, their retention probability increases rapidly; in the whole incident energy range 0.5–50.0 eV, the reflection probability gradually drops, but still exceeds 60%. By varying the incident angle, the retention probability may increase in some energy ranges compared with those in the case of vertical incidence, but the reflection probability still dominates. In this paper, we also obtain the depth distribution of energy deposition of incident hydrogen and its isotopes. It is found that tritium deposits more energies in the surface region than hydrogen.
-
Keywords:
- plasma facing materials /
- molecular dynamics method /
- tungsten /
- hydrogen
[1] Kaufmann M, Neu R 2007 Fusion Eng. Des. 82 521
[2] Paméla J, Matthews G F, Philipps V, Kamendje R 2007 J. Nucl. Mater. 363–365 1
[3] Doerner R P 2007 J. Nucl. Mater. 363–365 32
[4] Shu W M, Luo G N, Yamanishi T 2007 J. Nucl. Mater. 367–370 1463
[5] Shu W M, Wakai E, Yamanishi T 2007 Nucl. Fusion 47 201
[6] Ruan W, Xie A D, Yu X G, Wu D L 2011 Chin. Phys. B 20 043104
[7] Henriksson K O E, Nordlund K, Keinonen J, Vörtler K, Dreissigacker S 2006 Surface Sci. 600 3167
[8] Ge C C, Zhou Z J, Song S X, Du J, Zhong Z H 2007 J. Nucl. Mater. 363 1211
[9] Heinola K, Ahlgren T 2010 J. Appl. Phys. 107 11
[10] Liu Y L, Lu W, Gao A Y, Gui L J, Zhang Y 2012 Chin. Phys. B 21 126103
[11] Liu Y L, Zhou H B, Zhang Y 2011 J. Alloys Compd. 509 8277
[12] Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (London: Nicki Dennis) p111
[13] Yang Z S, Xu Q, Hong R J, Li Q, Luo G N 2010 Fusion Eng. Des. 85 1517
[14] Li X C, Gao F, Lu G H 2009 Nucl. Instrum. Meth. B 267 3197
[15] Li S Y, Sun J Z, Zhang Z H, Liu S G, Wang D Z 2011 Acta Phys. Sin. 60 057901 (in Chinese) [李守阳, 孙继忠, 张治海, 刘升光, 王德真 2011 60 057901]
[16] Zhang Z H, Sun J Z, Liu S G, Wang D Z 2012 Acta Phys. Sin. 61 047901 (in Chinese) [张治海, 孙继忠, 刘升光, 王德真 2012 61 047901]
[17] Sun J Z, Zhang Z H, Liu S G, Wang D Z 2012 Acta Phys. Sin. 61 055201 (in Chinese) [孙继忠, 张治海, 刘升光, 王德真 2012 61 055201]
[18] Juslin N, Erhart P, Traskelin P, Nord J, Henriksson K O E, Nordlund K, Salonen E, Albe K 2005 J. Appl. Phys. 98 123520
[19] Sang C F, Sun J Z, Wang D Z 2011 J. Nucl. Mater. 415 204
[20] Brenner D W 1990 Phys. Rev. B 42 9458
[21] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N, Lu G H 2010 Nucl. Fusion 50 025016
[22] Adelman S A, Doll J D 1976 J. Chem. Phys. 64 2375
[23] Heinola K, Ahlgren T 2010 J. Appl. Phys. 107 113531
[24] Frauenfelder R 1969 J. Vac. Sci. Technol. 6 388
-
[1] Kaufmann M, Neu R 2007 Fusion Eng. Des. 82 521
[2] Paméla J, Matthews G F, Philipps V, Kamendje R 2007 J. Nucl. Mater. 363–365 1
[3] Doerner R P 2007 J. Nucl. Mater. 363–365 32
[4] Shu W M, Luo G N, Yamanishi T 2007 J. Nucl. Mater. 367–370 1463
[5] Shu W M, Wakai E, Yamanishi T 2007 Nucl. Fusion 47 201
[6] Ruan W, Xie A D, Yu X G, Wu D L 2011 Chin. Phys. B 20 043104
[7] Henriksson K O E, Nordlund K, Keinonen J, Vörtler K, Dreissigacker S 2006 Surface Sci. 600 3167
[8] Ge C C, Zhou Z J, Song S X, Du J, Zhong Z H 2007 J. Nucl. Mater. 363 1211
[9] Heinola K, Ahlgren T 2010 J. Appl. Phys. 107 11
[10] Liu Y L, Lu W, Gao A Y, Gui L J, Zhang Y 2012 Chin. Phys. B 21 126103
[11] Liu Y L, Zhou H B, Zhang Y 2011 J. Alloys Compd. 509 8277
[12] Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (London: Nicki Dennis) p111
[13] Yang Z S, Xu Q, Hong R J, Li Q, Luo G N 2010 Fusion Eng. Des. 85 1517
[14] Li X C, Gao F, Lu G H 2009 Nucl. Instrum. Meth. B 267 3197
[15] Li S Y, Sun J Z, Zhang Z H, Liu S G, Wang D Z 2011 Acta Phys. Sin. 60 057901 (in Chinese) [李守阳, 孙继忠, 张治海, 刘升光, 王德真 2011 60 057901]
[16] Zhang Z H, Sun J Z, Liu S G, Wang D Z 2012 Acta Phys. Sin. 61 047901 (in Chinese) [张治海, 孙继忠, 刘升光, 王德真 2012 61 047901]
[17] Sun J Z, Zhang Z H, Liu S G, Wang D Z 2012 Acta Phys. Sin. 61 055201 (in Chinese) [孙继忠, 张治海, 刘升光, 王德真 2012 61 055201]
[18] Juslin N, Erhart P, Traskelin P, Nord J, Henriksson K O E, Nordlund K, Salonen E, Albe K 2005 J. Appl. Phys. 98 123520
[19] Sang C F, Sun J Z, Wang D Z 2011 J. Nucl. Mater. 415 204
[20] Brenner D W 1990 Phys. Rev. B 42 9458
[21] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N, Lu G H 2010 Nucl. Fusion 50 025016
[22] Adelman S A, Doll J D 1976 J. Chem. Phys. 64 2375
[23] Heinola K, Ahlgren T 2010 J. Appl. Phys. 107 113531
[24] Frauenfelder R 1969 J. Vac. Sci. Technol. 6 388
计量
- 文章访问数: 6425
- PDF下载量: 388
- 被引次数: 0