搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电压型双频率控制开关变换器的动力学建模与多周期行为分析

吴松荣 何圣仲 许建平 周国华 王金平

引用本文:
Citation:

电压型双频率控制开关变换器的动力学建模与多周期行为分析

吴松荣, 何圣仲, 许建平, 周国华, 王金平

Dynamical modeling and multi-period behavior analysis of voltage-mode bi-frequency controlled switching converter

Wu Song-Rong, He Sheng-Zhong, Xu Jian-Ping, Zhou Guo-Hua, Wang Jin-Ping
PDF
导出引用
  • 在断续导电模式下, 建立了电压型双频率控制开关变换器的动力学模型, 并推导了相应的特征值方程. 根据动力学模型, 采用分岔图研究了电路参数变化时变换器存在的边界碰撞分岔行为和周期2, 周期3,周期4等多周期行为, 结果表明: 变换器经历了周期1态、多周期态、周期1态的分岔路由; 周期态的转变均是由边界碰撞分岔引起的. 根据特征值方程, 采用Lyapunov指数研究了变换器的稳定性, 结果表明: 随着电路参数的变化, Lyapunov指数始终小于零, 变换器一直工作于稳定的周期态, 验证了电压型双频率控制开关变换器的周期3行为并不意味着变换器会必然发生混沌. 通过电路仿真, 分析了负载变化时变换器的时域波形、相轨图和频谱图, 验证了动力学模型的可行性和理论分析的正确性. 实验结果验证了文中的仿真结果.
    A dynamical model is proposed and the corresponding characteristic aligns are derived for voltage-mode bi-frequency controlled switching converter operating in discontinuous conduction mode. According to the dynamical model, the border-collision bifurcation and multi-period behaviors, such as period-2, period-3, period-4, and so on, are studied using bifurcation diagrams as the circuit parameters are varied. It is found that the converter behaves along the bifurcation route of period-1, multi-period, and period-1, and the change of period state is induced by border-collision bifurcation. Based on the characteristic equation, the converter stability is investigated by the Lyapunov exponent. It is shown that Lyapunov exponent is always smaller than zero with the variation of circuit parameters and the converter operates in stable period state all the time. Also, it is validated that period-3 behavior of voltage-mode bi-frequency controlled switching converter does not predicate its inevitable chaos. Time-domain waveforms, phase portraits, and frequency spectra of voltage-mode bi-frequency controlled switching converter are analyzed by circuit simulation, which validates the feasibility of dynamical model and the correctness of theoretical analysis. Simulation results are verified by experiments in this paper.
    • 基金项目: 国家自然科学基金(批准号: 51177140)、四川省青年科技基金(批准号: 2013JQ0033) 和中央高校基本科研业务费专项资金 (批准号: 2682013ZT20, SWJTU11CX032) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51177140), the Sichuan Provincial Youth Science and Technology Fund (Grant No. 2013JQ0033), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. 2682013ZT20, SWJTU11CX032).
    [1]

    Chan W C Y, Tse C K 1997 IEEE Trans. Circuits Syst. I 44 1129

    [2]

    Wang F Q, Zhang H, Ma X K 2012 Chin. Phys. B 21 020505

    [3]

    Banerjee S, Parui S, Gupta A 2004 IEEE Trans. Circuits Syst. II 51 649

    [4]

    Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin. 61 120501 (in Chinese) [沙金, 包伯成, 许建平, 高玉 2012 61 120501]

    [5]

    Aroudi A El, Bernadero L, Toribio E, Olivar G 1999 IEEE Trans. Circuits Syst. I 46 1374

    [6]

    Wang F Q, Ma X K, Yan Y 2011 Acta Phys. Sin. 60 060510 (in Chinese) [王发强, 马西奎, 闫晔 2011 60 060510]

    [7]

    Iu H H C, Tse C K, Pjevalica V, Lai Y M 2001 Int. J. Circ. Theor. Appl. 29 281

    [8]

    Zhou G H, Bao B C, Xu J P 2013 Int J Bifurcation and Chaos 23 1350062

    [9]

    Zhou Y F, Chen J N, IU H H C, Tse C K 2008 Int J Bifurcation and Chaos 18 121

    [10]

    Maity S, Tripathy D, Bhattacharya T K, Banerjee S 2007 IEEE Trans. on Circuits and Systems I 54 1120

    [11]

    Zhou G H, Xu J P, Bao B C 2010 Acta Phys. Sin. 59 2272 (in Chinese) [周国华, 许建平, 包伯成 2010 59 2272]

    [12]

    Zhou G H, Xu J P, Bao B C, Jin Y Y 2010 Chin. Phys. B 19 060508

    [13]

    Zhou G H, Xu J P, Bao B C 2012 Int J Bifurcation and Chaos 22 1250008

    [14]

    Zhou G H, Bao B C, Xu J P, Jin Y Y 2010 Chin. Phys. B 19 050509

    [15]

    Yang P, Bao B C, Sha J, Xu J P 2013 Acta Phys. Sin. 62 010504 (in Chinese) [杨平, 包伯成, 沙金, 许建平 2013 62 010504]

    [16]

    Yang N N, Liu C X, Wu C J 2012 Chin. Phys. B 21 080503

    [17]

    He S Z, Zhou G H, Xu J P, Bao B C, Yang P 2013 Acta Phys. Sin. 62 110503 (in Chinese) [何圣仲, 周国华, 许建平, 包伯成, 杨平 2013 62 110503]

    [18]

    Wang F Q, Zhang H, Ma X K 2008 Acta Phys. Sin. 57 2842 (in Chinese) [王发强, 张浩, 马西奎 2008 57 2842]

    [19]

    Wang F Q, Zhang H, Ma X K 2008 Acta Phys. Sin. 57 1522 (in Chinese) [王发强, 张浩, 马西奎 2008 57 1522]

    [20]

    Wang J P, Xu J P, Zhou G H, Mi C B, Qin M 2011 Acta Phys. Sin. 60 048402 (in Chinese) [王金平, 许建平, 周国华, 米长宝, 秦明 2011 60 048402]

    [21]

    Wang J P, Xu J P, Xu Y J 2011 Acta Phys. Sin. 60 058401 (in Chinese) [王金平, 许建平, 徐扬军 2011 60 058401]

    [22]

    Zhang X, Bao B C, Wang J P, Ma Z H, Xu J P 2012 Acta Phys. Sin. 61 160503 (in Chinese) [张希, 包伯成, 王金平, 马正华, 许建平 2012 61 160503]

    [23]

    Wang J P, Xu J P, Qin M, Mu Q B 2003 Proceeding of the CSEE 30 1 (in Chinese) [王金平, 许建平, 秦明, 牟清波 2010 中国电机工程学报 30 1]

    [24]

    Xu J P, Wang J P 2011 IEEE Trans Industrial Electronics 58 3658

  • [1]

    Chan W C Y, Tse C K 1997 IEEE Trans. Circuits Syst. I 44 1129

    [2]

    Wang F Q, Zhang H, Ma X K 2012 Chin. Phys. B 21 020505

    [3]

    Banerjee S, Parui S, Gupta A 2004 IEEE Trans. Circuits Syst. II 51 649

    [4]

    Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin. 61 120501 (in Chinese) [沙金, 包伯成, 许建平, 高玉 2012 61 120501]

    [5]

    Aroudi A El, Bernadero L, Toribio E, Olivar G 1999 IEEE Trans. Circuits Syst. I 46 1374

    [6]

    Wang F Q, Ma X K, Yan Y 2011 Acta Phys. Sin. 60 060510 (in Chinese) [王发强, 马西奎, 闫晔 2011 60 060510]

    [7]

    Iu H H C, Tse C K, Pjevalica V, Lai Y M 2001 Int. J. Circ. Theor. Appl. 29 281

    [8]

    Zhou G H, Bao B C, Xu J P 2013 Int J Bifurcation and Chaos 23 1350062

    [9]

    Zhou Y F, Chen J N, IU H H C, Tse C K 2008 Int J Bifurcation and Chaos 18 121

    [10]

    Maity S, Tripathy D, Bhattacharya T K, Banerjee S 2007 IEEE Trans. on Circuits and Systems I 54 1120

    [11]

    Zhou G H, Xu J P, Bao B C 2010 Acta Phys. Sin. 59 2272 (in Chinese) [周国华, 许建平, 包伯成 2010 59 2272]

    [12]

    Zhou G H, Xu J P, Bao B C, Jin Y Y 2010 Chin. Phys. B 19 060508

    [13]

    Zhou G H, Xu J P, Bao B C 2012 Int J Bifurcation and Chaos 22 1250008

    [14]

    Zhou G H, Bao B C, Xu J P, Jin Y Y 2010 Chin. Phys. B 19 050509

    [15]

    Yang P, Bao B C, Sha J, Xu J P 2013 Acta Phys. Sin. 62 010504 (in Chinese) [杨平, 包伯成, 沙金, 许建平 2013 62 010504]

    [16]

    Yang N N, Liu C X, Wu C J 2012 Chin. Phys. B 21 080503

    [17]

    He S Z, Zhou G H, Xu J P, Bao B C, Yang P 2013 Acta Phys. Sin. 62 110503 (in Chinese) [何圣仲, 周国华, 许建平, 包伯成, 杨平 2013 62 110503]

    [18]

    Wang F Q, Zhang H, Ma X K 2008 Acta Phys. Sin. 57 2842 (in Chinese) [王发强, 张浩, 马西奎 2008 57 2842]

    [19]

    Wang F Q, Zhang H, Ma X K 2008 Acta Phys. Sin. 57 1522 (in Chinese) [王发强, 张浩, 马西奎 2008 57 1522]

    [20]

    Wang J P, Xu J P, Zhou G H, Mi C B, Qin M 2011 Acta Phys. Sin. 60 048402 (in Chinese) [王金平, 许建平, 周国华, 米长宝, 秦明 2011 60 048402]

    [21]

    Wang J P, Xu J P, Xu Y J 2011 Acta Phys. Sin. 60 058401 (in Chinese) [王金平, 许建平, 徐扬军 2011 60 058401]

    [22]

    Zhang X, Bao B C, Wang J P, Ma Z H, Xu J P 2012 Acta Phys. Sin. 61 160503 (in Chinese) [张希, 包伯成, 王金平, 马正华, 许建平 2012 61 160503]

    [23]

    Wang J P, Xu J P, Qin M, Mu Q B 2003 Proceeding of the CSEE 30 1 (in Chinese) [王金平, 许建平, 秦明, 牟清波 2010 中国电机工程学报 30 1]

    [24]

    Xu J P, Wang J P 2011 IEEE Trans Industrial Electronics 58 3658

  • [1] 杨科利. 一类可变禁区的不连续系统的加周期分岔.  , 2015, 64(12): 120502. doi: 10.7498/aps.64.120502
    [2] 刘啸天, 周国华, 李振华, 陈兴. 基于双缘调制的数字电压型控制Buck变换器离散迭代映射建模与动力学分析.  , 2015, 64(22): 228401. doi: 10.7498/aps.64.228401
    [3] 史国栋, 张海明, 包伯成, 冯霏, 董伟. 脉冲序列控制双断续导电模式BIFRED变换器的动力学建模与多周期行为.  , 2015, 64(1): 010501. doi: 10.7498/aps.64.010501
    [4] 徐红梅, 金永镐, 金璟璇. 基于符号动力学的开关变换器时间不可逆性分析.  , 2014, 63(13): 130502. doi: 10.7498/aps.63.130502
    [5] 何圣仲, 周国华, 许建平, 吴松荣, 陈利. 输出电容时间常数对V2控制Buck变换器的动力学特性的影响.  , 2014, 63(13): 130501. doi: 10.7498/aps.63.130501
    [6] 沙金, 许建平, 刘姝晗, 钟曙. 谷值电流型脉冲序列控制开关变换器及其能量建模研究.  , 2014, 63(9): 098401. doi: 10.7498/aps.63.098401
    [7] 吴松荣, 周国华, 王金平, 许建平, 何圣仲. 多频率控制开关变换器的自相似和混频现象分析.  , 2014, 63(2): 028401. doi: 10.7498/aps.63.028401
    [8] 钟曙, 沙金, 许建平, 许丽君, 周国华. 脉冲跨周期调制连续导电模式Buck变换器低频波动现象研究.  , 2014, 63(19): 198401. doi: 10.7498/aps.63.198401
    [9] 杨平, 许建平, 何圣仲, 包伯成. 电流控制二次型Boost变换器的动力学研究.  , 2013, 62(16): 160501. doi: 10.7498/aps.62.160501
    [10] 秦明, 许建平, 高玉, 王金平. 基于电流基准的开关变换器脉冲序列控制方法.  , 2012, 61(3): 030204. doi: 10.7498/aps.61.030204
    [11] 沙金, 包伯成, 许建平, 高玉. 脉冲序列控制电流断续模式Buck变换器的动力学建模与边界碰撞分岔.  , 2012, 61(12): 120501. doi: 10.7498/aps.61.120501
    [12] 包伯成, 杨平, 马正华, 张希. 电路参数宽范围变化时电流控制开关变换器的动力学研究.  , 2012, 61(22): 220502. doi: 10.7498/aps.61.220502
    [13] 王发强, 马西奎, 闫晔. 不同开关频率下电压控制升压变换器中的Hopf分岔分析.  , 2011, 60(6): 060510. doi: 10.7498/aps.60.060510
    [14] 周国华, 许建平, 包伯成. 峰值/谷值电流型控制开关DC-DC变换器的对称动力学现象分析.  , 2010, 59(4): 2272-2280. doi: 10.7498/aps.59.2272
    [15] 包伯成, 周国华, 许建平, 刘中. 斜坡补偿电流模式控制开关变换器的动力学建模与分析.  , 2010, 59(6): 3769-3777. doi: 10.7498/aps.59.3769
    [16] 杨谈, 金跃辉, 程时端. TCP-RED离散反馈系统中的边界碰撞分岔及混沌控制.  , 2009, 58(8): 5224-5237. doi: 10.7498/aps.58.5224
    [17] 秦明, 许建平. 开关变换器多级脉冲序列控制研究.  , 2009, 58(11): 7603-7612. doi: 10.7498/aps.58.7603
    [18] 杨 汝, 张 波, 丘东元. 开关变换器离散子系统混沌点过程描述及EMI抑制.  , 2008, 57(3): 1389-1397. doi: 10.7498/aps.57.1389
    [19] 杨 汝, 张 波, 褚利丽. 开关变换器倍周期分岔精细层次结构及其普适常数研究.  , 2008, 57(5): 2770-2778. doi: 10.7498/aps.57.2770
    [20] 戴 栋, 马西奎, 李小峰. 一类具有两个边界的分段光滑系统中边界碰撞分岔现象及混沌.  , 2003, 52(11): 2729-2736. doi: 10.7498/aps.52.2729
计量
  • 文章访问数:  5299
  • PDF下载量:  638
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-28
  • 修回日期:  2013-07-23
  • 刊出日期:  2013-11-05

/

返回文章
返回
Baidu
map