搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荷控忆阻器等效电路分析模型及其电路特性研究

胡丰伟 包伯成 武花干 王春丽

引用本文:
Citation:

荷控忆阻器等效电路分析模型及其电路特性研究

胡丰伟, 包伯成, 武花干, 王春丽

Equivalent circuit analysis model of charge-controlled memristor and its circuit characteristics

Hu Feng-Wei, Bao Bo-Cheng, Wu Hua-Gan, Wang Chun-Li
PDF
导出引用
  • 忆阻器是物理上新实现的具有记忆特性的基本二端电路元件. 根据φ-q关系式的泰勒级数形式构建了荷控忆阻器等效电路分析模型, 以三次非线性荷控忆阻器模型为例, 对不同参数条件下的荷控忆阻器进行了伏安关系、有无源性等电路特性的理论分析. 结果表明: 荷控忆阻器的伏安关系具有斜体“8”字形紧磁滞回线特性, 随其参数符号的不同, 荷控忆阻器呈现出无源性和有源性, 导致其电路特性发生相应的变化; 相比无源荷控忆阻器, 有源荷控忆阻器更适用于作为二次谐波信号产生电路使用. 制作了荷控忆阻器特性分析等效电路的实验电路, 实验测量结果很好地验证了理论分析结果.
    Memristor realized physically is recently a basic two-terminal circuit element with memory property. Based on Taylor series form of φ-q relationship, a charge-controlled memristor equivalent circuit analysis model is built. A charge-controlled memristor model with cubic nonlinearity is taken, as an example, to make a theoretical analysis of circuit characteristics, such as voltage-current relationship, active-passive property, and so on, of the charge-controlled memristor with different parameters. Results indicate that the voltage-current relationship of the charge-controlled memristor has an italic “8” shaped hysteresis loop characteristic, and the charge-controlled memristor shows passivity and activity accompanied with the variations of parameter symbols, resulting in the occurrence of the corresponding variations of circuit characteristics; compared with the passive memristor, the active memristor is more suitable for use as a second harmonic signal generation circuit. An experiment circuit is built based on the equivalent circuit of the charge-controlled memristor characteristic analysis, and the experimental results well verify the theoretical analysis.
    • 基金项目: 国家自然科学基金(批准号: 51277017)和江苏省自然科学基金(批准号: BK2012583)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51277017), and the Natural Science Foundations of Jiangsu Province, China (Grant No BK2012583).
    [1]

    Chua L O 1971 IEEE Trans. Circuit Theory CT-18 507

    [2]

    Chua L O 1976 Proc. IEEE 64 209

    [3]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [4]

    Wang X B, Chen Y R, Xi H W, Li H, Dimitrov D 2009 IEEE Electron Device Lett. 30 294

    [5]

    Pershin Y V, Di Ventra M 2011 Adv. Phys. 60 145

    [6]

    Bao B C, Feng F, Dong W, Pan S H 2013 Chin. Phys. B 22 068401

    [7]

    Joglekar Y N, Wolf S J 2009 Euro. J. Phys. 30 661

    [8]

    Riaza 2010 IEEE Trans. Circuits Syst. II: Exp. Briefs 57 223

    [9]

    Bao B C, Shi G D, Xu J P, Liu Z, Pan S H 2011 Sci China Ser. E-Tech. Sci. 54 2180

    [10]

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡文, 许建平, 刘中, 邹凌 2011 60 120502]

    [11]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [12]

    Muthuswamy B, Chua L O 2010 Int. J. Bifurc. Chaos 20 1567

    [13]

    Yu D S, Liang Y, Chen H, Iu H H C 2013 IEEE Trans. Circuits Syst. II: Exp. Briefs 60 207

    [14]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510

    [15]

    Bao B C, Xu J P, Liu Z 2010 Chin. Phys. Lett. 27 070504

    [16]

    Li Z J, Zeng Y C 2013 Chin. Phys. B 22 040502

    [17]

    Witrisal K 2009 Electron. Lett. 45 713

    [18]

    Li Z W, Liu H J, Xu X 2013 Acta Phys. Sin. 62 096401 (in Chinese) [李智炜, 刘海军, 徐欣 2013 62 096401]

    [19]

    Jia L N, Huang A P, Zheng X H, Xiao Z S 2012 Acta Phys. Sin. 61 217306 (in Chinese) [贾林楠, 黄安平, 郑晓虎, 肖志松 2012 61 217306]

    [20]

    Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502

    [21]

    Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717

    [22]

    Zhang X, Zhou Y Z, Bi Q, Yang X H, Zu Y X 2010 Acta Phys. Sin. 59 6673 (in Chinese) [张旭, 周玉泽, 闭强, 杨兴华, 俎云霄 2010 59 6673]

    [23]

    Song D H, L M F, Ren X, Li M M, Zu Y X 2012 Acta Phys. Sin. 61 118101 (in Chinese) [宋德华, 吕梦菲, 任翔, 李萌萌, 俎云霄 2012 61 118101]

    [24]

    Biolková V, Kolka Z, Biolek Z, Biolek D 2010 Proc. of the European Conf. of Circuits Technology and Devices (ECCTD’10) Tenerife, Spain, 2010 p261

  • [1]

    Chua L O 1971 IEEE Trans. Circuit Theory CT-18 507

    [2]

    Chua L O 1976 Proc. IEEE 64 209

    [3]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [4]

    Wang X B, Chen Y R, Xi H W, Li H, Dimitrov D 2009 IEEE Electron Device Lett. 30 294

    [5]

    Pershin Y V, Di Ventra M 2011 Adv. Phys. 60 145

    [6]

    Bao B C, Feng F, Dong W, Pan S H 2013 Chin. Phys. B 22 068401

    [7]

    Joglekar Y N, Wolf S J 2009 Euro. J. Phys. 30 661

    [8]

    Riaza 2010 IEEE Trans. Circuits Syst. II: Exp. Briefs 57 223

    [9]

    Bao B C, Shi G D, Xu J P, Liu Z, Pan S H 2011 Sci China Ser. E-Tech. Sci. 54 2180

    [10]

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡文, 许建平, 刘中, 邹凌 2011 60 120502]

    [11]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [12]

    Muthuswamy B, Chua L O 2010 Int. J. Bifurc. Chaos 20 1567

    [13]

    Yu D S, Liang Y, Chen H, Iu H H C 2013 IEEE Trans. Circuits Syst. II: Exp. Briefs 60 207

    [14]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510

    [15]

    Bao B C, Xu J P, Liu Z 2010 Chin. Phys. Lett. 27 070504

    [16]

    Li Z J, Zeng Y C 2013 Chin. Phys. B 22 040502

    [17]

    Witrisal K 2009 Electron. Lett. 45 713

    [18]

    Li Z W, Liu H J, Xu X 2013 Acta Phys. Sin. 62 096401 (in Chinese) [李智炜, 刘海军, 徐欣 2013 62 096401]

    [19]

    Jia L N, Huang A P, Zheng X H, Xiao Z S 2012 Acta Phys. Sin. 61 217306 (in Chinese) [贾林楠, 黄安平, 郑晓虎, 肖志松 2012 61 217306]

    [20]

    Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502

    [21]

    Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717

    [22]

    Zhang X, Zhou Y Z, Bi Q, Yang X H, Zu Y X 2010 Acta Phys. Sin. 59 6673 (in Chinese) [张旭, 周玉泽, 闭强, 杨兴华, 俎云霄 2010 59 6673]

    [23]

    Song D H, L M F, Ren X, Li M M, Zu Y X 2012 Acta Phys. Sin. 61 118101 (in Chinese) [宋德华, 吕梦菲, 任翔, 李萌萌, 俎云霄 2012 61 118101]

    [24]

    Biolková V, Kolka Z, Biolek Z, Biolek D 2010 Proc. of the European Conf. of Circuits Technology and Devices (ECCTD’10) Tenerife, Spain, 2010 p261

  • [1] 宁仁霞, 黄旺, 王菲, 孙剑, 焦铮. 双明模耦合的双波段类电磁诱导透明研究.  , 2022, 71(1): 014201. doi: 10.7498/aps.71.20211312
    [2] 宁仁霞, 黄旺, 王菲, 孙剑, 焦铮. 双明模耦合的双波段类电磁诱导透明研究.  , 2021, (): . doi: 10.7498/aps.70.20211312
    [3] 陈畅子, 马东林, 李延涛, 冷永祥. 高功率脉冲磁控溅射钛靶材的放电模型及等离子特性.  , 2021, 70(18): 180701. doi: 10.7498/aps.70.20202050
    [4] 李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥. 双层螺旋环超表面复合吸波体等效电路模型及微波损耗机制.  , 2019, 68(9): 095201. doi: 10.7498/aps.68.20181960
    [5] 陈明东, 揭晓华, 张海燕. 碳纳米管复合吸波涂层微波吸收性能的模拟计算.  , 2014, 63(6): 066103. doi: 10.7498/aps.63.066103
    [6] 陈姝媛, 阮存军, 王勇. 带状注速调管多间隙扩展互作用输出腔等效电路的研究.  , 2014, 63(2): 028402. doi: 10.7498/aps.63.028402
    [7] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究.  , 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [8] 洪庆辉, 曾以成, 李志军. 含磁控和荷控两种忆阻器的混沌电路设计与仿真.  , 2013, 62(23): 230502. doi: 10.7498/aps.62.230502
    [9] 吴超, 吕绪良, 曾朝阳, 贾其. 基于阻抗模拟的等效电磁参数研究.  , 2013, 62(5): 054101. doi: 10.7498/aps.62.054101
    [10] 王秀芝, 高劲松, 徐念喜. 利用等效电路模型快速分析加载集总元件的微型化频率选择表面.  , 2013, 62(20): 207301. doi: 10.7498/aps.62.207301
    [11] 张小丽, 林书玉, 付志强, 王勇. 弯曲振动薄圆盘的共振频率和等效电路参数研究.  , 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [12] 胡永刚, 夏风, 肖建中, 雷超, 李向东. 基于阻抗模型解析的氧化锆固体电解质组织结构演变模型.  , 2012, 61(9): 098102. doi: 10.7498/aps.61.098102
    [13] 周静, 刘存金, 李儒, 陈文. 异质界面对Ca(Mg1/3Nb2/3)O3/CaTiO3叠层薄膜结构和介电性能的影响.  , 2012, 61(6): 067401. doi: 10.7498/aps.61.067401
    [14] 白春江, 李建清, 胡玉禄, 杨中海, 李斌. 利用等效电路模型计算耦合腔行波管注-波互作用.  , 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [15] 宋德华, 吕梦菲, 任翔, 李萌萌, 俎云霄. 忆阻电路的基本性质及其应用.  , 2012, 61(11): 118101. doi: 10.7498/aps.61.118101
    [16] 包伯成, 胡文, 许建平, 刘中, 邹凌. 忆阻混沌电路的分析与实现.  , 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
    [17] 刘 鹏, 贺 颖, 李 俊, 朱刚强, 边小兵. 添加Nb对CaCu3Ti4O12陶瓷介电性能的影响.  , 2007, 56(9): 5489-5493. doi: 10.7498/aps.56.5489
    [18] 辛宏梁, 袁望治, 程金科, 林 宏, 阮建中, 赵振杰. NiFeCoP/BeCu复合结构丝的巨磁阻抗效应和磁化频率特性.  , 2007, 56(7): 4152-4157. doi: 10.7498/aps.56.4152
    [19] 李洪奇. 介观压电石英晶体等效电路的量子化.  , 2005, 54(3): 1361-1365. doi: 10.7498/aps.54.1361
    [20] 王均宏. 脉冲电压电流沿偶极天线传播过程的等效电路法分析.  , 2000, 49(9): 1696-1701. doi: 10.7498/aps.49.1696
计量
  • 文章访问数:  8749
  • PDF下载量:  1190
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-07
  • 修回日期:  2013-07-21
  • 刊出日期:  2013-11-05

/

返回文章
返回
Baidu
map