-
为了获得相变温度低且热致变色性能优越的光学材料, 室温下在F:SnO2 (FTO)导电玻璃基板表面沉积钨钒金属膜, 再经空气气氛下的热氧化处理, 制备了W掺杂VO2/FTO复合薄膜, 利用X射线光电子能谱、X射线衍射和扫描电镜对薄膜的结构和表面形貌进行了分析. 结果表明: 高温热氧化处理过程中没有生成W, F, V混合氧化物, W以替换V原子的方式掺杂. 与采用相同工艺和条件制备的纯VO2/FTO复合薄膜相比, W掺杂VO2薄膜没有改变晶面取向, 仍具有(110)晶面择优取向, 相变温度下降到35 ℃左右, 热滞回线收窄到4 ℃, 高低温下的近红外光透过率变化量提高到28%. 薄膜的结晶程度明显提高, 表面变得平滑致密, 具有很好的一致性, 对光电薄膜器件的设计开发和工业化生产具有重要意义.In order to obtain low phase transition temperature and superior thermochromic optical material, W-doped VO2/FTO composite thin films are prepared by depositing metallic vanadium on FTO (F:SnO2) conductive glass substrate in argon atmosphere at room temperature and then annealed in air ambient. XPS, XRD and SEM are used for analyzing the structures and surface morphologies of the films. The results indicate that no mixed oxides of V, W and F are produced during high-temperature thermal oxidation. W is doped by replacing V atoms. Compared with the pure VO2/FTO composite thin film prepared using the same process, the crystal orientation of W-doped VO2 thin film is not changed and still retains preferred crystal orientation in the (110) direction. The phase transition temperature drops down to about 35 ℃, and the thermal hysteresis loop narrows to 4 ℃. The variation of IR transmittance between the high temperature and the low temperature reaches 28%. SEM results show that the crystallinity of the thin film is improved significantly, showing smooth, compact and uniform surface morphology. This brings about many new opportunities for optoelectronic devices and industrial production.
-
Keywords:
- W-doped /
- VO2 /
- FTO conductive glass /
- magnetron sputtering
[1] Morin F J 1959 Phys. Rev. Lett. 3 34
[2] Lu S W, Hou L S, Gan F X 1999 Thin Solid Films 353 40
[3] Burkhardt W, Christmann T, Meyer B K, Niessner W, Schalch D, Scharmann A 1999 Thin Solid Films 345 229
[4] Gherida M, Vincent H, Marezio M, Launay J L 1977 J. Solid State Chem. 22 423
[5] Villeneuve G, Bordet A, Casalot A, Hagenmuller P 1971 Mater. Res. Bull. 6 119
[6] Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803
[7] Burkhardt W, Christmann T, Franke S, Kriegseis W, Merster D, Meyer B K, Niessner W, Schalch D, Scharmann A 2002 Thin Solid Films 402 226
[8] Soltani M, Chaker M, Haddad E, Kruzelecky RV, Margot J 2004 Appl. Phys. Lett. 85 1958
[9] Guinneton F, Sauques L, Valmalette J C, Cros F, Gavarri J R 2004 Thin Solid Films 446 287
[10] Li J H, Yuan N Y, Xie T B, Dan D D 2007 Acta Phys. Sin. 56 1794 (in Chinese) [李金华, 袁宁一, 谢太斌, 但迪迪 2007 56 1794]
[11] Soltani M, Chaker M 2004 J. Vac. Sci. Technol. A 22 859
[12] Zhou S, Li Y, Zhu H Q, Sun R X, Zhang Y M, Huang Y Z, Li L, Shen Y J, Zhen Q X, Tong G X, Fang B Y 2012 Surf. Coat. Technol. 206 2922.
[13] Suzuki H, Yamaguchi K, Miyazaki H 2007 Compos. Sci. Technol. 67 1617
[14] Saitzek S, Guinneton F, Sauques L, Aguir K, Gavarri J R 2007 Opt. Mater. 30 407
[15] Xu G, Jin P, Tazawa M, Yoshimura K 2004 Sol. Energy Mater. Sol. Cells 83 29
[16] Brook L A, Evans P, Foster H A, Pemble M E, Steele A, Sheel D W, Yates H M 2007 J. Photochem. Photobiol. A: Chemistry 187 53
[17] Duchene J, Terraillon M, Pailly P, Adam G 1971 Appl. Phys. Lett. 19 115
[18] Fisher B 1975 J. Phys. C 8 2072
[19] Chae B G, Kim H T, Youn D H, Kang K Y 2005 Physica B 369 76
[20] Ruzmetov D, Gopalakrishnan G, Deng J, Narayanamurti V, Ramanathan S 2010 J. Appl. Phys. 107 094305
[21] Okimura K, Ezreena N, Sasakawa Y, Sakai J 2009 Jpn. J. Appl. Phys. 48 065003
[22] Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.: Condens. Matter 12 8837
[23] Kim H T, Chae B G, Youn D H, Kim G, Kang K Y, Lee S J, Kim K, Lim Y S 2005 Appl. Phys. Lett. 86 242101
[24] Ruzmetov D, Gopalakrishnan G, Deng J D, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 083702
[25] Yang Z, Ko C, Ramanathan S 2010 J. Appl. Phys. 108 073708
[26] Lee M J, Park Y, Suh D S, Lee E H, Seo S, Kim D C, Jung R, Kang B S, Ahn S E, Lee C B, Seo D H, Cha Y K, Yoo I K, Kim J S, Park B H 2007 Adv. Mater. 19 3919
[27] Yang T H, Jin C M, Zhou H H, Narayan R J, Narayan J 2010 Appl. Phys. Lett. 97 702101
[28] Heinilehto S T, Lappalainen J H, Jantunen H M, Lantto V 2011 J. Electroceram 27 7
[29] Zhu H Q, Li Y, Zhou S, Huang Y Z, Tong G X, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2011 Acta Phys. Sin. 60 098104 (in Chinese) [朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英 2011 60 098104]
[30] Bowman R M, Gregg J M 1998 J. Mater. Sci: Mater. Electron. 9 187
[31] Atrei A, Bardi U, Tarducci C, Rovida G 2000 J. Phys. Chem. B 104 3121
[32] Continenza A, Massidda S, Posternak M 1999 Phys. Rev. B 60 15699
-
[1] Morin F J 1959 Phys. Rev. Lett. 3 34
[2] Lu S W, Hou L S, Gan F X 1999 Thin Solid Films 353 40
[3] Burkhardt W, Christmann T, Meyer B K, Niessner W, Schalch D, Scharmann A 1999 Thin Solid Films 345 229
[4] Gherida M, Vincent H, Marezio M, Launay J L 1977 J. Solid State Chem. 22 423
[5] Villeneuve G, Bordet A, Casalot A, Hagenmuller P 1971 Mater. Res. Bull. 6 119
[6] Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803
[7] Burkhardt W, Christmann T, Franke S, Kriegseis W, Merster D, Meyer B K, Niessner W, Schalch D, Scharmann A 2002 Thin Solid Films 402 226
[8] Soltani M, Chaker M, Haddad E, Kruzelecky RV, Margot J 2004 Appl. Phys. Lett. 85 1958
[9] Guinneton F, Sauques L, Valmalette J C, Cros F, Gavarri J R 2004 Thin Solid Films 446 287
[10] Li J H, Yuan N Y, Xie T B, Dan D D 2007 Acta Phys. Sin. 56 1794 (in Chinese) [李金华, 袁宁一, 谢太斌, 但迪迪 2007 56 1794]
[11] Soltani M, Chaker M 2004 J. Vac. Sci. Technol. A 22 859
[12] Zhou S, Li Y, Zhu H Q, Sun R X, Zhang Y M, Huang Y Z, Li L, Shen Y J, Zhen Q X, Tong G X, Fang B Y 2012 Surf. Coat. Technol. 206 2922.
[13] Suzuki H, Yamaguchi K, Miyazaki H 2007 Compos. Sci. Technol. 67 1617
[14] Saitzek S, Guinneton F, Sauques L, Aguir K, Gavarri J R 2007 Opt. Mater. 30 407
[15] Xu G, Jin P, Tazawa M, Yoshimura K 2004 Sol. Energy Mater. Sol. Cells 83 29
[16] Brook L A, Evans P, Foster H A, Pemble M E, Steele A, Sheel D W, Yates H M 2007 J. Photochem. Photobiol. A: Chemistry 187 53
[17] Duchene J, Terraillon M, Pailly P, Adam G 1971 Appl. Phys. Lett. 19 115
[18] Fisher B 1975 J. Phys. C 8 2072
[19] Chae B G, Kim H T, Youn D H, Kang K Y 2005 Physica B 369 76
[20] Ruzmetov D, Gopalakrishnan G, Deng J, Narayanamurti V, Ramanathan S 2010 J. Appl. Phys. 107 094305
[21] Okimura K, Ezreena N, Sasakawa Y, Sakai J 2009 Jpn. J. Appl. Phys. 48 065003
[22] Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.: Condens. Matter 12 8837
[23] Kim H T, Chae B G, Youn D H, Kim G, Kang K Y, Lee S J, Kim K, Lim Y S 2005 Appl. Phys. Lett. 86 242101
[24] Ruzmetov D, Gopalakrishnan G, Deng J D, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 083702
[25] Yang Z, Ko C, Ramanathan S 2010 J. Appl. Phys. 108 073708
[26] Lee M J, Park Y, Suh D S, Lee E H, Seo S, Kim D C, Jung R, Kang B S, Ahn S E, Lee C B, Seo D H, Cha Y K, Yoo I K, Kim J S, Park B H 2007 Adv. Mater. 19 3919
[27] Yang T H, Jin C M, Zhou H H, Narayan R J, Narayan J 2010 Appl. Phys. Lett. 97 702101
[28] Heinilehto S T, Lappalainen J H, Jantunen H M, Lantto V 2011 J. Electroceram 27 7
[29] Zhu H Q, Li Y, Zhou S, Huang Y Z, Tong G X, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2011 Acta Phys. Sin. 60 098104 (in Chinese) [朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英 2011 60 098104]
[30] Bowman R M, Gregg J M 1998 J. Mater. Sci: Mater. Electron. 9 187
[31] Atrei A, Bardi U, Tarducci C, Rovida G 2000 J. Phys. Chem. B 104 3121
[32] Continenza A, Massidda S, Posternak M 1999 Phys. Rev. B 60 15699
计量
- 文章访问数: 7208
- PDF下载量: 1101
- 被引次数: 0