-
采用分子束外延技术对δ掺杂GaAs/AlxGa1-xAs二维电子气(2DEG)样品进行了生长. 在样品生长过程中, 分别改变掺杂浓度(Nd)、空间隔离层厚度(Wd) 和AlxGa1-xAs中Al组分(xAl)的大小, 并在双温(300 K, 78 K)条件下对生长的样品进行了霍尔测量; 结合测试结果, 分别对Nd, Wd及xAl与GaAs/AlxGa1-xAs 2DEG的载流子浓度和迁移率之间的关系规律进行了细致的分析讨论. 生长了包含有低密度InAs量子点层的δ掺杂GaAs/AlxGa1-xAs 2DEG 样品, 采用梯度生长法得到了不同密度的InAs量子点. 霍尔测量结果表明, 随着InAs量子点密度的增加, GaAs/AlxGa1-xAs 2DEG的迁移率大幅度减小, 实验中获得了密度最低为16×108/cm2的InAs量子点样品. 实验结果为内嵌InAs量子点的δ掺杂GaAs/AlxGa1-xAs 2DEG的研究和应用提供了依据和参考.The δ-doped GaAs/AlxGa1-xAs 2DEG samples are grown with molecular beam epitaxy. In this process, the doping concentration (Nd), spatial isolation layer thickness (Wd) and Al component of AlxGa1-xAs (xAl) are changed separately. Then Hall measurements on the samples are made in the two temperature conditions (300 and 78 K). According to the test results, the relationships of Nd, Wd and xAl to the carrier density and mobility of GaAs/AlxGa1-xAs 2DEG are discussed respectively. The δ-doped GaAs/AlxGa1-xAs 2DEG with embedded InAs quantum dot samples are grown, and InAs quantum dots with different densities are grown with gradient growth method. The Hall measurement results show that the mobility of GaAs/AlxGa1-xAs 2DEG greatly decreases with density of InAs quantum dots steadily increasing. In experiments, the lowest density of 16×108/cm2 InAs quantum dot sample is obtained. The experimental results can provide a reference for the study and application of δ-doped GaAs/AlxGa1-xAs 2DEG with embedded InAs quantum dots.
-
Keywords:
- two-dimensional electron gas /
- InAs quantum dots /
- carrier concentration /
- mobility
[1] Spirkoska D, Fontcuberta i Morral A, Dufouleur J, Xie Q S, Abstreiter G 2011 Phys. Status Solidi RRL 9 353
[2] Shu Q, Shu Y C, Zhang G J, Liu R B, Yao J H, Pi B, Xing X D, Lin Y W, Xu J J, Wang Z G 2006 Acta Phys. Sin. 55 1379 (in Chinese) [舒强, 舒永春, 张冠杰, 刘如彬, 姚江宏, 皮彪, 邢晓东, 林耀望, 许京军, 王占国 2006 55 1379]
[3] Nádvorník L, Orlita M, Goncharuk N A, Smrča L, Novák V, Jurka V, Hruška K, Výborný Z, Wasilewski Z R, Potemski M, Výborný K 2012 New J. Phys. 14 053002
[4] Dingle R, Störmer H L, Gossard A C, Wiegmann W 1978 Appl. Phys. Lett. 33 665
[5] Mimura T, Hiyamizu S, Fujii T, Nanbu K 1980 Jap. J. Appl. Phys. 19 225
[6] Gao H L, Li D L, Zhou W Z, Shang L Y, Wang B Q, Zhu Z P, Zeng Y P 2007 Acta Phys. Sin. 56 4955 (in Chinese) [高宏玲, 李东临, 周文政, 商丽燕, 王宝强, 朱战平, 曾一平 2007 56 4955]
[7] Shimomura S, Shinohara K, Kasahara K, Hiyamizu S 1998 Microelectron. Engin. 43 213
[8] Rekaya S, Bouzaïene L, Sfaxi L, Hjiri M, Contreras S, Robert J L, Maaref H 2005 Phys. Stat. Sol. A 202 602
[9] Rössler C, Feil T, Mensch P, Ihn T, Ensslin K, Schuh D, Wegscheider W 2010 New J. Phys. 12 043007
[10] Kardyna B E, Hees S S, Shields A J 2007 Appl. Phys. Lett. 90 181114
[11] Gansen1 E J, Rowe1 M A, Greene M B, Rosenberg D, EHarvey T 2007 Nature Photonics 1 585
[12] Ma J, Luo H L, Wen S C 2011 Acta Phys. Sin. 60 094205 (in Chinese) [马娟, 罗海陆, 文双春 2011 60 094205]
[13] van De Pauw L J 1968 Philips Tech. Rev. 20 220
[14] Stern F 1972 Phys. Rev. B 5 4891
[15] Rekaya1 S, Bouzaïene1 L, Sfaxi L, Hjiri M, Contreras S, Robert J L, Maaref H 2005 Phys. Stat. Sol. A 202 602
[16] Ando T 1982 J. Phys. Soc. Jpn. 51 3900
[17] Yu T H, Brennan K F 2001 J. Appl. Phys. 89 3827
[18] Huang S S, Niu Z C, Ni H Q, Xiong Y H, Zhan F, Fang Z D, Xia J B 2007 J. Crystal Growth 751 301
[19] Li M F, Yu Y, He J F, Wang L J, Zhu Y, Shang X J, Ni H Q, Niu Z C 2013 Nanoscale Res. Lett. 8 86
[20] Li G D, Yin H, Zhu Q S, Sakaki H, Jiang C 2010 J. Appl. Phys. 108 043702
[21] Sibariy H, Raymondy A, Kubisa M 1996 Semicond. Sci. Technol. 11 1002
-
[1] Spirkoska D, Fontcuberta i Morral A, Dufouleur J, Xie Q S, Abstreiter G 2011 Phys. Status Solidi RRL 9 353
[2] Shu Q, Shu Y C, Zhang G J, Liu R B, Yao J H, Pi B, Xing X D, Lin Y W, Xu J J, Wang Z G 2006 Acta Phys. Sin. 55 1379 (in Chinese) [舒强, 舒永春, 张冠杰, 刘如彬, 姚江宏, 皮彪, 邢晓东, 林耀望, 许京军, 王占国 2006 55 1379]
[3] Nádvorník L, Orlita M, Goncharuk N A, Smrča L, Novák V, Jurka V, Hruška K, Výborný Z, Wasilewski Z R, Potemski M, Výborný K 2012 New J. Phys. 14 053002
[4] Dingle R, Störmer H L, Gossard A C, Wiegmann W 1978 Appl. Phys. Lett. 33 665
[5] Mimura T, Hiyamizu S, Fujii T, Nanbu K 1980 Jap. J. Appl. Phys. 19 225
[6] Gao H L, Li D L, Zhou W Z, Shang L Y, Wang B Q, Zhu Z P, Zeng Y P 2007 Acta Phys. Sin. 56 4955 (in Chinese) [高宏玲, 李东临, 周文政, 商丽燕, 王宝强, 朱战平, 曾一平 2007 56 4955]
[7] Shimomura S, Shinohara K, Kasahara K, Hiyamizu S 1998 Microelectron. Engin. 43 213
[8] Rekaya S, Bouzaïene L, Sfaxi L, Hjiri M, Contreras S, Robert J L, Maaref H 2005 Phys. Stat. Sol. A 202 602
[9] Rössler C, Feil T, Mensch P, Ihn T, Ensslin K, Schuh D, Wegscheider W 2010 New J. Phys. 12 043007
[10] Kardyna B E, Hees S S, Shields A J 2007 Appl. Phys. Lett. 90 181114
[11] Gansen1 E J, Rowe1 M A, Greene M B, Rosenberg D, EHarvey T 2007 Nature Photonics 1 585
[12] Ma J, Luo H L, Wen S C 2011 Acta Phys. Sin. 60 094205 (in Chinese) [马娟, 罗海陆, 文双春 2011 60 094205]
[13] van De Pauw L J 1968 Philips Tech. Rev. 20 220
[14] Stern F 1972 Phys. Rev. B 5 4891
[15] Rekaya1 S, Bouzaïene1 L, Sfaxi L, Hjiri M, Contreras S, Robert J L, Maaref H 2005 Phys. Stat. Sol. A 202 602
[16] Ando T 1982 J. Phys. Soc. Jpn. 51 3900
[17] Yu T H, Brennan K F 2001 J. Appl. Phys. 89 3827
[18] Huang S S, Niu Z C, Ni H Q, Xiong Y H, Zhan F, Fang Z D, Xia J B 2007 J. Crystal Growth 751 301
[19] Li M F, Yu Y, He J F, Wang L J, Zhu Y, Shang X J, Ni H Q, Niu Z C 2013 Nanoscale Res. Lett. 8 86
[20] Li G D, Yin H, Zhu Q S, Sakaki H, Jiang C 2010 J. Appl. Phys. 108 043702
[21] Sibariy H, Raymondy A, Kubisa M 1996 Semicond. Sci. Technol. 11 1002
计量
- 文章访问数: 6434
- PDF下载量: 396
- 被引次数: 0