搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi2Te3拓扑绝缘体表面颗粒化铅膜诱导的超导邻近效应

丁玥 沈洁 庞远 刘广同 樊洁 姬忠庆 杨昌黎 吕力

引用本文:
Citation:

Bi2Te3拓扑绝缘体表面颗粒化铅膜诱导的超导邻近效应

丁玥, 沈洁, 庞远, 刘广同, 樊洁, 姬忠庆, 杨昌黎, 吕力

Proximity-effect-induced superconductivity by granular Pb film on the surface of Bi2Te3 topological insulator

Ding Yue, Shen Jie, Pang Yuan, Liu Guang-Tong, Fan Jie, Ji Zhong-Qing, Yang Chang-Li, Lü Li
PDF
导出引用
  • 拓扑绝缘体的出现为寻找拓扑超导体和Majorana费米子提供了一种可能的途径. 在拓扑绝缘体Bi2Te3表面沉积极薄的不连续铅膜, 试图通过邻近效应感应出大片的超导区, 为下一步研究拓扑超导电性创造条件.借助四引线电输运测量实验, 在0.25 K的低温下看到了超流现象, 表明沉积在Bi2Te3表面的厚度小于20 nm的颗粒化铅膜能够诱导邻近效应, 并且使大片Bi2Te3超导.
    The appearance of topological insulators provides us with a chance of finding topological superconductors and Majorana fermions. To pursue these findings one might need to induce large areas of proximity superconductivity on the surface of Bi2Te3 by depositing granular and discrete Pb film. In this experiment, a superconducting state over a distance of 9.5 rm is observed below 0.25 K on a Bi2Te3 crystal whose surface is deposited with Pb grains with a thickness of less than 20 nm and separated at a distance of 20-30 nm.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2009CB929101, 2011CB921702);国家自然科学基金(批准号: 91221203, 11174340, 11174357)和中国科学院知识创新工程项目资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2009CB929101, 2011CB921702), the National Natural Science Foundation of China (Grant Nos. 91221203, 11174340, 11174357), and the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences.
    [1]

    Meissner H 1960 Phys. Rev. 117 672

    [2]

    Pannetier B, Courtois H 2000 J. Low Temp. Phys. 118 599

    [3]

    Golubov A A, Kupriyanov M Y, Il’ichev E 2004 Rev. Mod. Phys. 76 411

    [4]

    Nguyen C, Werking J, Kroemer H, Hu E L 1990 Appl. Phys. Lett. 57 87

    [5]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, Morpurgo A F 2007 Nature 446 56

    [6]

    Wang J, Shi C T, Tian M L, Zhang Q, Kumar N, Jain J K, Mallouk T E, Chan M H W 2009 Phys. Rev. Lett. 102 247003

    [7]

    Wang J, Singh M, Tian M L, Kumar N, Liu B Z, Shi C T, Jain J K, Samarth N, Mallouk T E, Chan M H W 2010 Nat. Phys. 6 389

    [8]

    Moore J E 2010 Nature 464 194

    [9]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [10]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [11]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438

    [12]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398

    [13]

    Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2009 Science 325 178

    [14]

    Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407

    [15]

    Fu L and Kane C L 2009 Phys. Rev. Lett. 102 216403

    [16]

    Tanaka Y, Yokoyama T, Nagaosa N 2009 Phys. Rev. Lett. 103 107002

    [17]

    Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001

    [18]

    Ou Y X, Singh M, Wang J 2012 Sci. China-Phys. Mech. Astron. 55 2226

    [19]

    Kasumov A Y, Kononenko O V, Matveev V N, Borsenko T B, Tulin V A, Vdovin E E, Khodos I I 1996 Phys. Rev. Lett. 77 3029

    [20]

    Sacépé B, Oostinga J B, Li J, Ubaldini A, Couto N J G, Giannini E, Morpurgo A F 2011 Nat. Commun. 2 575

    [21]

    Zhang D, Wang J, DaSilva A M, Lee J S, Gutierrez H R, Chan M H W, Jain J, Samarth N 2011 Phys. Rev. B 84 165120

    [22]

    Wang J, Chang C Z, Li H D, He K, Zhang D, Singh M, Ma X C, Samarth N, Xie M H, Xue Q K, Chan M H W 2012 Phys. Rev. B 85 045415

    [23]

    Veldhorst M, Snelder M, Hoek M, Gang T, Guduru V K, Wang X L, Zeitler U, Wiel W G V D, Golubov A A, Hilgenkamp H 2012 Nat. Mat. 11 417

    [24]

    Williams J R, Bestwick A J, Gallagher P, Hong S S, Cui Y, Bleich A S, Analytis J G, Fisher I R, Goldhaber-Gordon D 2012 Phys. Rev. Lett. 109 056803

    [25]

    Qu F M, Yang F, Shen J, Ding Y, Chen J, Ji Z Q, Liu G T, Fan J, Jing X N, Yang C L, Lu L 2012 Sci. Rep. 2 339

    [26]

    He H T, Li B K, Liu H C, Guo X, Wang Z Y, Xie M H, Wang J N 2012 Appl. Phys. Lett. 100 032105

    [27]

    Tinkham M 1996 Introduction to Superconductivity (New York: McGraw-Hill, Inc.) p131

    [28]

    De Gennes P G 1964 Rev. Mod. Phys. 36 225

  • [1]

    Meissner H 1960 Phys. Rev. 117 672

    [2]

    Pannetier B, Courtois H 2000 J. Low Temp. Phys. 118 599

    [3]

    Golubov A A, Kupriyanov M Y, Il’ichev E 2004 Rev. Mod. Phys. 76 411

    [4]

    Nguyen C, Werking J, Kroemer H, Hu E L 1990 Appl. Phys. Lett. 57 87

    [5]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, Morpurgo A F 2007 Nature 446 56

    [6]

    Wang J, Shi C T, Tian M L, Zhang Q, Kumar N, Jain J K, Mallouk T E, Chan M H W 2009 Phys. Rev. Lett. 102 247003

    [7]

    Wang J, Singh M, Tian M L, Kumar N, Liu B Z, Shi C T, Jain J K, Samarth N, Mallouk T E, Chan M H W 2010 Nat. Phys. 6 389

    [8]

    Moore J E 2010 Nature 464 194

    [9]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [10]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [11]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438

    [12]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398

    [13]

    Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2009 Science 325 178

    [14]

    Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407

    [15]

    Fu L and Kane C L 2009 Phys. Rev. Lett. 102 216403

    [16]

    Tanaka Y, Yokoyama T, Nagaosa N 2009 Phys. Rev. Lett. 103 107002

    [17]

    Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001

    [18]

    Ou Y X, Singh M, Wang J 2012 Sci. China-Phys. Mech. Astron. 55 2226

    [19]

    Kasumov A Y, Kononenko O V, Matveev V N, Borsenko T B, Tulin V A, Vdovin E E, Khodos I I 1996 Phys. Rev. Lett. 77 3029

    [20]

    Sacépé B, Oostinga J B, Li J, Ubaldini A, Couto N J G, Giannini E, Morpurgo A F 2011 Nat. Commun. 2 575

    [21]

    Zhang D, Wang J, DaSilva A M, Lee J S, Gutierrez H R, Chan M H W, Jain J, Samarth N 2011 Phys. Rev. B 84 165120

    [22]

    Wang J, Chang C Z, Li H D, He K, Zhang D, Singh M, Ma X C, Samarth N, Xie M H, Xue Q K, Chan M H W 2012 Phys. Rev. B 85 045415

    [23]

    Veldhorst M, Snelder M, Hoek M, Gang T, Guduru V K, Wang X L, Zeitler U, Wiel W G V D, Golubov A A, Hilgenkamp H 2012 Nat. Mat. 11 417

    [24]

    Williams J R, Bestwick A J, Gallagher P, Hong S S, Cui Y, Bleich A S, Analytis J G, Fisher I R, Goldhaber-Gordon D 2012 Phys. Rev. Lett. 109 056803

    [25]

    Qu F M, Yang F, Shen J, Ding Y, Chen J, Ji Z Q, Liu G T, Fan J, Jing X N, Yang C L, Lu L 2012 Sci. Rep. 2 339

    [26]

    He H T, Li B K, Liu H C, Guo X, Wang Z Y, Xie M H, Wang J N 2012 Appl. Phys. Lett. 100 032105

    [27]

    Tinkham M 1996 Introduction to Superconductivity (New York: McGraw-Hill, Inc.) p131

    [28]

    De Gennes P G 1964 Rev. Mod. Phys. 36 225

  • [1] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象.  , 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [2] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制.  , 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [3] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展.  , 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [4] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制.  , 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [5] 许佳玲, 贾利云, 刘超, 吴佺, 赵领军, 马丽, 侯登录. Li(Na)AuS体系拓扑绝缘体材料的能带结构.  , 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [6] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子.  , 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [7] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导.  , 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [8] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学.  , 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [9] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体.  , 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [10] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展.  , 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [11] 许楠, 张岩. 三聚化非厄密晶格中具有趋肤效应的拓扑边缘态.  , 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [12] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展.  , 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [13] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落.  , 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [14] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质.  , 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [15] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究.  , 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [16] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究.  , 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [17] 张小明, 刘国栋, 杜音, 刘恩克, 王文洪, 吴光恒, 柳忠元. 半Heusler型拓扑绝缘体LaPtBi能带调控的研究.  , 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
    [18] 曾伦武, 宋润霞. 点电荷在拓扑绝缘体和导体中感应磁单极.  , 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [19] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射.  , 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [20] 郁华玲. 超导邻近效应在正常金属层中引起的反常小能隙现象.  , 2007, 56(10): 6038-6044. doi: 10.7498/aps.56.6038
计量
  • 文章访问数:  8566
  • PDF下载量:  27134
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-23
  • 修回日期:  2013-05-09
  • 刊出日期:  2013-08-05

/

返回文章
返回
Baidu
map