搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非保守动力学系统Noether对称性的摄动与绝热不变量

张毅

引用本文:
Citation:

非保守动力学系统Noether对称性的摄动与绝热不变量

张毅

Perturbation to Noether symmetries and adiabatic invariants for nonconservative dynamic systems

Zhang Yi
PDF
导出引用
  • 基于非保守系统的El-Nabulsi动力学模型, 研究了非保守动力学系统Noether对称性的摄动与绝热不变量问题.首先, 引入El-Nabulsi在分数阶微积分框架下基于Riemann-Liouville分数阶积分提出的类分数阶变分问题, 列出非保守系统的Euler-Lagrange方程; 其次, 给出了Noether准对称变换的定义和判据, 建立了Noether对称性与不变量之间的关系, 得到了精确不变量; 最后, 提出并研究了该系统受小扰动作用后Noether对称性的摄动与绝热不变量问题, 证明了绝热不变量存在的条件及形式, 并举例证明结果的应用.
    The problem of perturbation to Noether symmetry and adiabatic invariant for a nonconservative dynamic system is studied under a dynamic model presented by El-Nabulsi. First of all, the fractional action-like variational problem proposed by El-Nabulsi under the framework of the fractional calculus and based on the definition of the Riemann-Liouville fractional integral is introduced, and the Euler-Lagrange equations of the nonconservative system are given. Secondly, the definition and criterion of the Noether quasi-symmetric transformation are given, the relationship between the Noether symmetry and the invariant is established, and the exact invariant is obtained. Finally, the perturbation to the Noether symmetry of the system after the action of a small disturbance and corresponding adiabatic invariant are proposed and studied, the conditions for the existence of adiabatic invariant and the formulation are given. An example is given to illustrate the application of results.
    • 基金项目: 国家自然科学基金(批准号: 10972151, 11272227) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10972151, 11272227).
    [1]

    Riewe F 1996 Phys. Rev. E 53 1890

    [2]

    Riewe F 1997 Phys. Rev. E 55 3581

    [3]

    Agrawal O P 2001 J. Appl. Mech. 68 339

    [4]

    Klimek M 2001 Czech. J. Phys. 51 1348

    [5]

    Klimek M 2002 Czech. J. Phys. 52 1247

    [6]

    Baleanu D, Avkar T 2004 Nuovo Cimento B 119 73

    [7]

    Rabei E M, Alhalholy T S, Taani A A 2004 Turk. J. Phys. 28 213

    [8]

    Narakari Achar B N, Hanneken J W, Clarke T 2004 Physica A 339 311

    [9]

    Baleanu D 2006 Czech. J. Phys. 56 1087

    [10]

    Tarasov V E 2006 J. Phys. A 39 8409

    [11]

    Baleanu D, Muslih S I 2008 J. Vib. Contr. 14 1301

    [12]

    Baleanu D, Trujillo J J 2009 Phys. Scr. 80 055101

    [13]

    Atanacković T M, Konjik S, Pilipović S 2008 J. Phys. A: Math. Theor. 41 095201

    [14]

    Wang Z H, Hu H Y 2009 Sci. China G 39 1495 (in Chinese) [王在华, 胡海岩 2009 中国科学G辑 39 1495]

    [15]

    El-Nabulsi R A 2011 Centr. Eur. J. Phys. 9 250

    [16]

    Cresson J, Inizan P 2009 Phys. Scr. T136 014007

    [17]

    Almeida R, Malinowska A B, Torres D F M 2010 J. Math. Phys. 51 033503

    [18]

    Zhou S, Fu H, Fu J L 2011 Sci. China: Phys. Mech. Astron. 54 1847

    [19]

    Golmankhaneh A K, Golmankhaneh A K, Baleanu D, Baleanu M C 2010 Int. J. Theor. Phys. 49 365

    [20]

    Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 110505 (in Chinese) [申永军, 杨绍普, 邢海军 2012 61 110505]

    [21]

    EI-Nabulsi A R 2005 Fizika A 14 289

    [22]

    El-Nabulsi A R, Torres D F M 2008 J. Math. Phys. 49 053521

    [23]

    El-Nabulsi A R 2009 Chaos Soliton. Fract. 42 52

    [24]

    El-Nabulsi A R 2011 Centr. Eur. J. Phys. 9 250

    [25]

    El-Nabulsi A R 2011 Appl. Math. Comput. 217 9492

    [26]

    Frederico G S F, Torres D F M 2006 Int. J. Appl. Math. 19 97

    [27]

    Frederico G S F, Torres D F M 2007 Int. J. Ecol. Econ. Stat. 9(F07) 74

    [28]

    Zhang Y, Zhou Y 2013 Nonlinear Dyn. DOI: 10.1007/s11071-013-0831-x

    [29]

    Mei F X, Liu D, Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press) p728 (in Chinese) [梅凤翔, 刘端, 罗勇 1991 高等分析力学 (北京: 北京理工大学出版社) 第728页]

    [30]

    Zhao Y Y, Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press) p164 (in Chinese) [赵跃宇, 梅凤翔1999 力学系统的对称性与守恒量 (北京: 科学出版社)第164页]

    [31]

    Zhao Y Y, Mei F X 1996 Acta Mech. Sin. 28 207 (in Chinese) [赵跃宇, 梅凤翔 1996 力学学报 28 207]

    [32]

    Chen X W, Shang M, Mei F X 2001 Chin. Phys. 10 997

    [33]

    Zhang Y 2002 Acta Phys. Sin. 51 1666 (in Chinese) [张毅 2002 51 1666]

    [34]

    Chen X W, Wang X M, Wang M Q 2004 Chin. Phys. 13 2003

    [35]

    Chen X W, Li Y M 2005 Chin. Phys. 14 663

    [36]

    Zhang Y, Fan C X, Mei F X 2006 Acta Phys. Sin. 55 3237 (in Chinese) [张毅, 范存新, 梅凤翔 2006 55 3237]

    [37]

    Zhang Y 2006 Acta Phys. Sin. 55 3833 (in Chinese) [张毅 2006 55 3833]

    [38]

    Luo S K, Guo Y X 2007 Commun. Theor. Phys. (Beijing, China) 47 25

    [39]

    Zhang Y 2006 Chin. Phys. 15 1935

    [40]

    Zhang Y 2007 Acta Phys. Sin. 56 1855 (in Chinese) [张毅 2007 56 1855]

    [41]

    Zhang Y, Fan C X 2007 Commun. Theor. Phys. (Beijing, China) 47 607

    [42]

    Ding N, Fang J H, Wang P, Zhang X N 2008 Commun. Theor. Phys. (Beijing, China) 49 57

    [43]

    Zhang M J, Fang J H, Lu K, Pang T, Lin P 2009 Commun. Theor. Phys. (Beijing, China) 51 961

  • [1]

    Riewe F 1996 Phys. Rev. E 53 1890

    [2]

    Riewe F 1997 Phys. Rev. E 55 3581

    [3]

    Agrawal O P 2001 J. Appl. Mech. 68 339

    [4]

    Klimek M 2001 Czech. J. Phys. 51 1348

    [5]

    Klimek M 2002 Czech. J. Phys. 52 1247

    [6]

    Baleanu D, Avkar T 2004 Nuovo Cimento B 119 73

    [7]

    Rabei E M, Alhalholy T S, Taani A A 2004 Turk. J. Phys. 28 213

    [8]

    Narakari Achar B N, Hanneken J W, Clarke T 2004 Physica A 339 311

    [9]

    Baleanu D 2006 Czech. J. Phys. 56 1087

    [10]

    Tarasov V E 2006 J. Phys. A 39 8409

    [11]

    Baleanu D, Muslih S I 2008 J. Vib. Contr. 14 1301

    [12]

    Baleanu D, Trujillo J J 2009 Phys. Scr. 80 055101

    [13]

    Atanacković T M, Konjik S, Pilipović S 2008 J. Phys. A: Math. Theor. 41 095201

    [14]

    Wang Z H, Hu H Y 2009 Sci. China G 39 1495 (in Chinese) [王在华, 胡海岩 2009 中国科学G辑 39 1495]

    [15]

    El-Nabulsi R A 2011 Centr. Eur. J. Phys. 9 250

    [16]

    Cresson J, Inizan P 2009 Phys. Scr. T136 014007

    [17]

    Almeida R, Malinowska A B, Torres D F M 2010 J. Math. Phys. 51 033503

    [18]

    Zhou S, Fu H, Fu J L 2011 Sci. China: Phys. Mech. Astron. 54 1847

    [19]

    Golmankhaneh A K, Golmankhaneh A K, Baleanu D, Baleanu M C 2010 Int. J. Theor. Phys. 49 365

    [20]

    Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 110505 (in Chinese) [申永军, 杨绍普, 邢海军 2012 61 110505]

    [21]

    EI-Nabulsi A R 2005 Fizika A 14 289

    [22]

    El-Nabulsi A R, Torres D F M 2008 J. Math. Phys. 49 053521

    [23]

    El-Nabulsi A R 2009 Chaos Soliton. Fract. 42 52

    [24]

    El-Nabulsi A R 2011 Centr. Eur. J. Phys. 9 250

    [25]

    El-Nabulsi A R 2011 Appl. Math. Comput. 217 9492

    [26]

    Frederico G S F, Torres D F M 2006 Int. J. Appl. Math. 19 97

    [27]

    Frederico G S F, Torres D F M 2007 Int. J. Ecol. Econ. Stat. 9(F07) 74

    [28]

    Zhang Y, Zhou Y 2013 Nonlinear Dyn. DOI: 10.1007/s11071-013-0831-x

    [29]

    Mei F X, Liu D, Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press) p728 (in Chinese) [梅凤翔, 刘端, 罗勇 1991 高等分析力学 (北京: 北京理工大学出版社) 第728页]

    [30]

    Zhao Y Y, Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press) p164 (in Chinese) [赵跃宇, 梅凤翔1999 力学系统的对称性与守恒量 (北京: 科学出版社)第164页]

    [31]

    Zhao Y Y, Mei F X 1996 Acta Mech. Sin. 28 207 (in Chinese) [赵跃宇, 梅凤翔 1996 力学学报 28 207]

    [32]

    Chen X W, Shang M, Mei F X 2001 Chin. Phys. 10 997

    [33]

    Zhang Y 2002 Acta Phys. Sin. 51 1666 (in Chinese) [张毅 2002 51 1666]

    [34]

    Chen X W, Wang X M, Wang M Q 2004 Chin. Phys. 13 2003

    [35]

    Chen X W, Li Y M 2005 Chin. Phys. 14 663

    [36]

    Zhang Y, Fan C X, Mei F X 2006 Acta Phys. Sin. 55 3237 (in Chinese) [张毅, 范存新, 梅凤翔 2006 55 3237]

    [37]

    Zhang Y 2006 Acta Phys. Sin. 55 3833 (in Chinese) [张毅 2006 55 3833]

    [38]

    Luo S K, Guo Y X 2007 Commun. Theor. Phys. (Beijing, China) 47 25

    [39]

    Zhang Y 2006 Chin. Phys. 15 1935

    [40]

    Zhang Y 2007 Acta Phys. Sin. 56 1855 (in Chinese) [张毅 2007 56 1855]

    [41]

    Zhang Y, Fan C X 2007 Commun. Theor. Phys. (Beijing, China) 47 607

    [42]

    Ding N, Fang J H, Wang P, Zhang X N 2008 Commun. Theor. Phys. (Beijing, China) 49 57

    [43]

    Zhang M J, Fang J H, Lu K, Pang T, Lin P 2009 Commun. Theor. Phys. (Beijing, China) 51 961

  • [1] 徐鑫鑫, 张毅. 分数阶非保守Lagrange系统的一类新型绝热不变量.  , 2020, 69(22): 220401. doi: 10.7498/aps.69.20200488
    [2] 陈菊, 张毅. El-Nabulsi动力学模型下非Chetaev型非完整系统的精确不变量与绝热不变量.  , 2015, 64(3): 034502. doi: 10.7498/aps.64.034502
    [3] 陈菊, 张毅. El-Nabulsi动力学模型下Birkhoff系统Noether对称性的摄动与绝热不变量.  , 2014, 63(10): 104501. doi: 10.7498/aps.63.104501
    [4] 张毅, 金世欣. 含时滞的非保守系统动力学的Noether对称性.  , 2013, 62(23): 234502. doi: 10.7498/aps.62.234502
    [5] 楼智美. 微扰Kepler系统轨道微分方程的近似Lie对称性与近似不变量.  , 2010, 59(10): 6764-6769. doi: 10.7498/aps.59.6764
    [6] 丁宁, 方建会. 非完整力学系统Mei对称性的摄动及其导致的一类新型Mei绝热不变量.  , 2009, 58(11): 7440-7446. doi: 10.7498/aps.58.7440
    [7] 罗绍凯. Lagrange系统一类新型的非Noether绝热不变量——Lutzky型绝热不变量.  , 2007, 56(10): 5580-5584. doi: 10.7498/aps.56.5580
    [8] 荆宏星, 李元成, 夏丽莉. 变质量单面完整约束系统Lie对称性的摄动与广义Hojman型绝热不变量.  , 2007, 56(6): 3043-3049. doi: 10.7498/aps.56.3043
    [9] 张 毅. 事件空间中完整系统的Lie对称性与绝热不变量.  , 2007, 56(6): 3054-3059. doi: 10.7498/aps.56.3054
    [10] 张 毅. 相空间中离散力学系统对称性的摄动与Hojman型绝热不变量.  , 2007, 56(4): 1855-1859. doi: 10.7498/aps.56.1855
    [11] 夏丽莉, 李元成. 相空间中非完整可控力学系统的对称性摄动与绝热不变量.  , 2007, 56(11): 6183-6187. doi: 10.7498/aps.56.6183
    [12] 张 毅. Birkhoff系统的一类新型绝热不变量.  , 2006, 55(8): 3833-3837. doi: 10.7498/aps.55.3833
    [13] 乔永芬, 赵淑红. 非保守系统广义Raitzin正则方程的形式不变性与非Noether守恒量.  , 2006, 55(2): 499-503. doi: 10.7498/aps.55.499
    [14] 张 毅, 范存新, 梅凤翔. Lagrange系统对称性的摄动与Hojman型绝热不变量.  , 2006, 55(7): 3237-3240. doi: 10.7498/aps.55.3237
    [15] 陈培胜, 方建会. 相空间中非完整非保守系统的形式不变性.  , 2003, 52(5): 1044-1047. doi: 10.7498/aps.52.1044
    [16] 张 毅, 梅凤翔. 广义经典力学系统对称性的摄动与绝热不变量.  , 2003, 52(10): 2368-2372. doi: 10.7498/aps.52.2368
    [17] 傅景礼, 陈立群, 谢凤萍. 相对论性Birkhoff系统的对称性摄动及其逆问题.  , 2003, 52(11): 2664-2670. doi: 10.7498/aps.52.2664
    [18] 张毅. 约束哈密顿系统在相空间中的精确不变量与绝热不变量.  , 2002, 51(11): 2417-2422. doi: 10.7498/aps.51.2417
    [19] 张毅. 单面约束Birkhoff系统对称性的摄动与绝热不变量.  , 2002, 51(8): 1666-1670. doi: 10.7498/aps.51.1666
    [20] 乔永芬, 李仁杰, 赵淑红. 高维增广相空间中广义力学系统的对称性和不变量.  , 2001, 50(5): 811-815. doi: 10.7498/aps.50.811
计量
  • 文章访问数:  6325
  • PDF下载量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-08
  • 修回日期:  2013-05-01
  • 刊出日期:  2013-08-05

/

返回文章
返回
Baidu
map