搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多可激性障碍下的螺旋波动力学

袁国勇 张焕 王光瑞

引用本文:
Citation:

多可激性障碍下的螺旋波动力学

袁国勇, 张焕, 王光瑞

Spiral-wave dynamics in an excitable medium with many excitability obstacles

Yuan Guo-Yong, Zhang Huan, Wang Guang-Rui
PDF
导出引用
  • 在许多实际可激系统中局部不均匀是广泛存在的, 它们是螺旋波形成以及动力学行为改变的重要因素. 本文研究了可激性障碍对螺旋波动力学行为的影响. 研究表明, 在障碍区域内可激性参数大于区域外情况下障碍会对其附近的螺旋波波头有吸引作用, 多局部障碍共存时吸引行为不仅依赖障碍分布, 而且依赖障碍的大小以及区域内可激性参数的具体取值. 通过抑制变量小值区域的变化分析了这些行为发生的原因. 在障碍区域内可激性参数小于区域外情况下障碍对其近邻的螺旋波波头有排斥作用, 排斥后波头的运动依赖初始螺旋波是刚性旋转的还是漫游的. 多局部障碍共存时排斥作用对螺旋波动力学行为的改变依赖障碍的分布、大小与区域内可激性参数的具体取值以及初始螺旋波的类型.
    Many real excitable systems can be descibed as inhomogeneous media, where the inhomogeneity is an important factor for the formation of spiral waves and the changing of their dynamics. In this paper, we investigate the effect of excitability obstacles on spiral-wave dynamics. For an excitability-reduced obstacle, the neighbor spiral tip is attracted into the obstacle. When more localized obstacles are placed, the attactive case depends on the distribution, size and excitability of the obstcales. On the basis of analyzing the small-value area of the inhibitor variable, we illustrate the mechanism of these behaviors occuring. For an excitability-enhanced obstacle, the nearby spiral tip is repelled. The tip motion after the repelsive effect depends on the type of the initial spiral wave, i.e. rigidily rotating spiral wave or meandering spiral wave. In the present of more localized obstacles, there exist different behaviors for different distributions, sizes and excitabilities of the obstcales, and different types of initial waves.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11005030);河北省自然科学基金(批准号: A2013205147)和河北省教育厅科研基金(批准号: 2009135)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11005030), the Natural Science Foundation of Hebei Province, China (Grant No. A2013205147), and the Scientific Research Fundation of the Education Department of Hebei Province, China (Grant No. 2009135).
    [1]

    Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851

    [2]

    Mikhailov A S, Showalter K 2006 Phys. Report 425 79

    [3]

    Frisch T, Rica S, Coullet P, Gilli J M 1994 Phys. Rev. Lett. 72 1471

    [4]

    Arecchi F T, Boccaletti S, Ramazza P 1999 Phys. Report 318 1

    [5]

    Van Oss C, Panfilov A V, Hogeweg P, Siegert F, Weijer C J 1996 J. Theor. Biol. 181 203

    [6]

    Lechleiter J, Girard S, Peralta E, Clapham D 1991 Science 252 123

    [7]

    Huang X Y, Xu W F, Liang J M, Takagaki K, Gao X, Wu J Y 2010 Neuron 68 978

    [8]

    Nettesheim S, Oertzen A V, Rotermund H H, Ertl G 1993 J. Chem. Phys. 98 9977

    [9]

    Dong L F, Wang H F, Liu F C, He Y F 2007 New. J. Phys. 9 330

    [10]

    Panfilov A V, Keener J P 1993 J. Theor. Biol. 163 439

    [11]

    Agladze K, Keener J P, Mller S C, Panfilov A 1994 Science 264 1746

    [12]

    Cabo C, Pertsov A M, Davidenko J M, Baxter W T, Gray R A, Jalife J 1996 Biophys. J. 70 1105

    [13]

    Fernández-García G, Gómez-Gesteira M, Muñuzuri A P, Pérez-Muñuzuri V, Pérez-Villar V 1994 Eur. J. Phys. 15 221

    [14]

    Cabo C, Pertsov A M, Baxter W T, Davidenko J M, Gray R A, Jalife J 1994 Circ. Res. 75 1014

    [15]

    Fast V G, Kléber A G. 1997 Cardiovasc. Res. 33 258

    [16]

    Xie F, Qu Z, Garfinkel A 1998 Phys. Rev. E 58 6355

    [17]

    Valderrábano M, Kim Y H, Yashima M, Wu T J, Karagueuzian H S, Chen P S 2000 J. Am. Coll. Cardiol. 36 2000

    [18]

    Shajahan T K, Sinha S, Pandit R 2007 Phys. Rev. E 75 011929

    [19]

    Shajahan T K, Nayak A R, Pandit R 2009 PLoS. ONE. 4 e4738

    [20]

    Zhang H, Ruan X S, Hu B B, Ouyang Q 2004 Phys. Rev. E 70 016212

    [21]

    Sridhar S, Sinha S, Panfilov A V 2010 Phys. Rev. E 82 051908

    [22]

    Xu L, Qu Z, Di Z 2009 Phys. Rev. E 79 036212

    [23]

    Wang P Y, Xie P 2000 Phys. Rev. E 61 5120

    [24]

    Wu N J, Zhang H, Ying H P, Cao Z J, Hu G 2006 Phys. Rev. E 73 060901R

    [25]

    Sakaguchi H, Fujimoto T 2003 Phys. Rev. E 67 067202

    [26]

    Ma J, Wang C N, Jin W Y, Li Y L, Pu Z S 2008 Chin. Phys. B 17 2844

    [27]

    Kim M, Bertram M, Pollmann M, von Oertzen A, Mikhailov A S, Rotermund H H, Ertl G 2001 Science 292 1357

    [28]

    Yuan G Y, Chen S G, Yang S P 2007 Eur. Phys. J. B 58 331

    [29]

    Agladze K, Kay M W, Krinsky V, Sarvazyan N 2007 Am. J. Physiol. Heart. Circ. Physiol. 293 H503

    [30]

    Zhang H, Cao Z, Wu N J, Ying H P, Hu G 2005 Phys. Rev. Lett. 94 188301

    [31]

    Tang G N, Deng M Y, Hu B, Hu G 2008 Phys. Rev. E 77 046217

    [32]

    Gottwald G, Pumir A, Krinsky V 2001 Chaos 11 487

    [33]

    Yuan G Y, Wang G R, Chen S G 2005 Europhys. Lett. 72 908

    [34]

    Ma J, Pu Z S, Feng W J, Li W X 2005 Acta. Phys. Sin. 54 4602 (in Chinese) [马军, 蒲忠胜, 冯旺军, 李维学 2005 54 4602]

    [35]

    Tanaka M, Isomura A, Hörning M, Kitahata H, Agladze K, Yoshikawa K 2009 Chaos 19 043114

    [36]

    Isomura A, Hörning M, Agladze K, Yoshikawa K 2008 Phys. Rev. E 78 066216

    [37]

    Hörning M, Isomura A, Agladze K, Yoshikawa K 2009 Phys. Rev. E 79 026218

    [38]

    Cherubini C, Filippi S, Gizzi A 2012 Phys. Rev. E 85 031915

    [39]

    Ávalos E, Lai P Y, Chan C K 2011 Europhys. Lett. 94 60006

    [40]

    Cysyk J, Tung L 2008 Biophys. J. 94 1533

    [41]

    Bittihn P, Squires A, Luther G, Bodenschatz E, Krinsky V, Parlitz U, Luther S 2010 Philos. Transact. A: Math. Phys. Eng. Sci. 368 2221

  • [1]

    Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851

    [2]

    Mikhailov A S, Showalter K 2006 Phys. Report 425 79

    [3]

    Frisch T, Rica S, Coullet P, Gilli J M 1994 Phys. Rev. Lett. 72 1471

    [4]

    Arecchi F T, Boccaletti S, Ramazza P 1999 Phys. Report 318 1

    [5]

    Van Oss C, Panfilov A V, Hogeweg P, Siegert F, Weijer C J 1996 J. Theor. Biol. 181 203

    [6]

    Lechleiter J, Girard S, Peralta E, Clapham D 1991 Science 252 123

    [7]

    Huang X Y, Xu W F, Liang J M, Takagaki K, Gao X, Wu J Y 2010 Neuron 68 978

    [8]

    Nettesheim S, Oertzen A V, Rotermund H H, Ertl G 1993 J. Chem. Phys. 98 9977

    [9]

    Dong L F, Wang H F, Liu F C, He Y F 2007 New. J. Phys. 9 330

    [10]

    Panfilov A V, Keener J P 1993 J. Theor. Biol. 163 439

    [11]

    Agladze K, Keener J P, Mller S C, Panfilov A 1994 Science 264 1746

    [12]

    Cabo C, Pertsov A M, Davidenko J M, Baxter W T, Gray R A, Jalife J 1996 Biophys. J. 70 1105

    [13]

    Fernández-García G, Gómez-Gesteira M, Muñuzuri A P, Pérez-Muñuzuri V, Pérez-Villar V 1994 Eur. J. Phys. 15 221

    [14]

    Cabo C, Pertsov A M, Baxter W T, Davidenko J M, Gray R A, Jalife J 1994 Circ. Res. 75 1014

    [15]

    Fast V G, Kléber A G. 1997 Cardiovasc. Res. 33 258

    [16]

    Xie F, Qu Z, Garfinkel A 1998 Phys. Rev. E 58 6355

    [17]

    Valderrábano M, Kim Y H, Yashima M, Wu T J, Karagueuzian H S, Chen P S 2000 J. Am. Coll. Cardiol. 36 2000

    [18]

    Shajahan T K, Sinha S, Pandit R 2007 Phys. Rev. E 75 011929

    [19]

    Shajahan T K, Nayak A R, Pandit R 2009 PLoS. ONE. 4 e4738

    [20]

    Zhang H, Ruan X S, Hu B B, Ouyang Q 2004 Phys. Rev. E 70 016212

    [21]

    Sridhar S, Sinha S, Panfilov A V 2010 Phys. Rev. E 82 051908

    [22]

    Xu L, Qu Z, Di Z 2009 Phys. Rev. E 79 036212

    [23]

    Wang P Y, Xie P 2000 Phys. Rev. E 61 5120

    [24]

    Wu N J, Zhang H, Ying H P, Cao Z J, Hu G 2006 Phys. Rev. E 73 060901R

    [25]

    Sakaguchi H, Fujimoto T 2003 Phys. Rev. E 67 067202

    [26]

    Ma J, Wang C N, Jin W Y, Li Y L, Pu Z S 2008 Chin. Phys. B 17 2844

    [27]

    Kim M, Bertram M, Pollmann M, von Oertzen A, Mikhailov A S, Rotermund H H, Ertl G 2001 Science 292 1357

    [28]

    Yuan G Y, Chen S G, Yang S P 2007 Eur. Phys. J. B 58 331

    [29]

    Agladze K, Kay M W, Krinsky V, Sarvazyan N 2007 Am. J. Physiol. Heart. Circ. Physiol. 293 H503

    [30]

    Zhang H, Cao Z, Wu N J, Ying H P, Hu G 2005 Phys. Rev. Lett. 94 188301

    [31]

    Tang G N, Deng M Y, Hu B, Hu G 2008 Phys. Rev. E 77 046217

    [32]

    Gottwald G, Pumir A, Krinsky V 2001 Chaos 11 487

    [33]

    Yuan G Y, Wang G R, Chen S G 2005 Europhys. Lett. 72 908

    [34]

    Ma J, Pu Z S, Feng W J, Li W X 2005 Acta. Phys. Sin. 54 4602 (in Chinese) [马军, 蒲忠胜, 冯旺军, 李维学 2005 54 4602]

    [35]

    Tanaka M, Isomura A, Hörning M, Kitahata H, Agladze K, Yoshikawa K 2009 Chaos 19 043114

    [36]

    Isomura A, Hörning M, Agladze K, Yoshikawa K 2008 Phys. Rev. E 78 066216

    [37]

    Hörning M, Isomura A, Agladze K, Yoshikawa K 2009 Phys. Rev. E 79 026218

    [38]

    Cherubini C, Filippi S, Gizzi A 2012 Phys. Rev. E 85 031915

    [39]

    Ávalos E, Lai P Y, Chan C K 2011 Europhys. Lett. 94 60006

    [40]

    Cysyk J, Tung L 2008 Biophys. J. 94 1533

    [41]

    Bittihn P, Squires A, Luther G, Bodenschatz E, Krinsky V, Parlitz U, Luther S 2010 Philos. Transact. A: Math. Phys. Eng. Sci. 368 2221

  • [1] 李倩昀, 白婧, 唐国宁. 两层老化心肌组织中螺旋波和时空混沌的控制.  , 2021, 70(9): 098202. doi: 10.7498/aps.70.20201294
    [2] 潘军廷, 何银杰, 夏远勋, 张宏. 极化电场对可激发介质中螺旋波的控制.  , 2020, 69(8): 080503. doi: 10.7498/aps.69.20191934
    [3] 李倩昀, 黄志精, 唐国宁. 通过抑制波头旋转消除心脏中的螺旋波和时空混沌.  , 2018, 67(24): 248201. doi: 10.7498/aps.67.20181291
    [4] 王小艳, 汪芃, 李倩昀, 唐国宁. 用晚钠电流终止心脏中的螺旋波和时空混沌.  , 2017, 66(13): 138201. doi: 10.7498/aps.66.138201
    [5] 潘飞, 王小艳, 汪芃, 黎维新, 唐国宁. 通过放慢钠通道开闭控制心脏中的螺旋波和时空混沌.  , 2016, 65(19): 198201. doi: 10.7498/aps.65.198201
    [6] 潘飞, 黎维新, 王小艳, 唐国宁. 用低通滤波方法终止心脏组织中的螺旋波和时空混沌.  , 2015, 64(21): 218202. doi: 10.7498/aps.64.218202
    [7] 李伟恒, 黎维新, 潘飞, 唐国宁. 两层耦合可激发介质中螺旋波转变为平面波.  , 2014, 63(20): 208201. doi: 10.7498/aps.63.208201
    [8] 乔成功, 李伟恒, 唐国宁. 细胞外钾离子浓度延迟恢复对螺旋波的影响研究.  , 2014, 63(23): 238201. doi: 10.7498/aps.63.238201
    [9] 陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁. 间接延迟耦合可激发介质中螺旋波的演化.  , 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [10] 乔成功, 王利利, 李伟恒, 唐国宁. 钾扩散耦合引起的心脏中螺旋波的变化.  , 2013, 62(19): 198201. doi: 10.7498/aps.62.198201
    [11] 周振玮, 王利利, 乔成功, 陈醒基, 田涛涛, 唐国宁. 用同步复极化终止心脏中的螺旋波和时空混沌.  , 2013, 62(15): 150508. doi: 10.7498/aps.62.150508
    [12] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究.  , 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [13] 董丽芳, 白占国, 贺亚峰. 非均匀可激发介质中的稀密螺旋波.  , 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
    [14] 钱郁. 时空调制对可激发介质螺旋波波头动力学行为影响及控制研究.  , 2012, 61(15): 158202. doi: 10.7498/aps.61.158202
    [15] 邝玉兰, 唐国宁. 利用短期心脏记忆消除螺旋波和时空混沌.  , 2012, 61(19): 190501. doi: 10.7498/aps.61.190501
    [16] 邝玉兰, 唐国宁. 心脏中的螺旋波和时空混沌的抑制研究.  , 2012, 61(10): 100504. doi: 10.7498/aps.61.100504
    [17] 钟敏, 唐国宁. 用钙离子通道激动剂抑制心脏组织中的螺旋波和时空混沌.  , 2010, 59(5): 3070-3076. doi: 10.7498/aps.59.3070
    [18] 钟敏, 唐国宁. 局域反馈抑制心脏中的螺旋波和时空混沌.  , 2010, 59(3): 1593-1599. doi: 10.7498/aps.59.1593
    [19] 岳立娟, 沈 柯, 徐明奇. 非线性反馈法控制相位共轭波的光学时空混沌.  , 2007, 56(8): 4378-4382. doi: 10.7498/aps.56.4378
    [20] 马 军, 蒲忠胜, 冯旺军, 李维学. 旋转中心力场消除螺旋波和时空混沌.  , 2005, 54(10): 4602-4609. doi: 10.7498/aps.54.4602
计量
  • 文章访问数:  6032
  • PDF下载量:  436
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-04
  • 修回日期:  2013-05-02
  • 刊出日期:  2013-08-05

/

返回文章
返回
Baidu
map