搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变工况下旋转机械故障跟踪的相空间曲变方法

范彬 胡雷 胡茑庆

引用本文:
Citation:

变工况下旋转机械故障跟踪的相空间曲变方法

范彬, 胡雷, 胡茑庆

Fault tracking of rotating machinery under variable operation based on phase space warping

Fan Bin, Hu Lei, Hu Niao-Qing
PDF
导出引用
  • 为实现在工况变化条件下对旋转机械的故障预测, 提出使用相空间曲变和平滑正交分解理论在变工况条件下跟踪旋转机械的故障演化过程. 首先在对目标系统的观测时间序列相空间重构的基础上, 通过量化相空间曲变构建信号损伤演化的跟踪函数, 为弥补累积模型误差和相空间点局部分布概率差异造成的误差, 将时间序列和相空间进行分割, 并以此构建跟踪矩阵; 再利用平滑正交分解方法将跟踪矩阵中分别由实际损伤劣化和工况变化造成的演化趋势进行分离, 根据平滑正交特征值提取出其中能够反映实际故障演化趋势的平滑正交分量; 最后以变转速情况下轴承外环故障退化的仿真信号为例验证算法的有效性. 计算结果表明: 本文提出的算法能够对旋转机械故障的演化趋势实现有效跟踪, 基本排除转速波动造成的工况变化影响.
    For fault prognosis of rotating machinery under variable operation, a fault tracking method based on phase space warping and smooth orthogonal decomposition (SOD) is presented to describe the degradation process of rotating machinery. Firstly, phase space is reconstructed using vibration time-series, and a tracking function of damage evolution is built by quantifying phase space warping. To compensate for cumulative model error and the error caused by variation of local probability distribution of the reference phase space points, the original time-series is partitioned into several data segments and the phase space is partitioned into several subspaces correspondingly. Several feature vectors are concatenated into tracking matrix. Secondly, the different trends caused by actual damage degradation and operation variety in the tracking matrix are separated by smooth orthogonal decomposition. According to smooth orthogonal values, dominant smooth orthogonal coordinates which reflect actual fault degradation trends are extracted. Finally, fault degradation process of bearing out-race is simulated. Rotating speed is varied during the degradation process. Applying the presented method to the degradation process tracking, the tracking matrix is built and decomposed by SOD, and the results show that the proposed method can track the evolution trend of the rotating machinery fault without the influence of operation condition variety.
    • 基金项目: 国家自然科学基金(批准号: 51105366);高等学校博士学科点专项科研基金(批准号: 20114307110017)和国防科学技术大学科研计划(批准号: JC12-03-02)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51105366), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114307110017), and the Research Project of National University of Defense Technology, China (Grant No. JC12-03-02).
    [1]

    Song J W, Mei X Z, Guo Y 2005 Bearing 12 28 (in Chinese) [宋京伟, 梅秀庄, 郭云 2005 轴承 12 28]

    [2]

    Kang H Y, Luan J Y, Zheng H Q, Cui Q B 2007 Chin. J. Mech. Engineer. 43 119 (in Chinese) [康海英, 栾军英, 郑海起, 崔清斌 2007 机械工程学报 43 119]

    [3]

    Liu J T, Du P A, Zhang Z Y 2012 Sci. China Tech. Sci. 55 673

    [4]

    Xu G, Luo Z G, Li M Y, Chen P 2001 Chin. J. Mech. Engineer. 37 104 (in Chinese) [徐刚, 骆志高, 李明义, 陈鹏 2001 机械工程学报 37 104]

    [5]

    Renaudin L, Bonnardot F, Musy O, Doray J B, Rémond D 2010 Mech. Syst. Signal Pr. 24 1998

    [6]

    Shao Y, Nezu K 2000 P. I. Mech. Eng. I: J. Sys. 214 217

    [7]

    Sutrisno E, Oh H, Vasan A S S, Pecht M 2012 Prognostics and Health Management (PHM) 2012 IEEE Conference Denver, USA, June 18-21, 2012 p1

    [8]

    Takens F 1981 Lecture Notes Math. 898 366

    [9]

    Sauer T, Yorke J A, Casdagli M 1991 J. Statist. Phys. 65 579

    [10]

    Gan J C, Xiao X C 2003 Acta Phys. Sin. 52 1096 (in Chinese) [甘建超, 肖先赐 2003 52 1096]

    [11]

    Wang G L, Yang P C, Mao Y Q 2008 Acta Phys. Sin. 57 714 (in Chinese) [王革丽, 杨培才, 毛宇清 2008 57 714]

    [12]

    Zhang S Q, Jia J, Gao M, Han X 2010 Acta Phys. Sin. 59 1576 (in Chinese) [张淑清, 贾健, 高敏, 韩叙 2010 59 1576]

    [13]

    Liu J, Shi S T, Zhao J C 2013 Chin. Phys. B 22 010505

    [14]

    Zhang Z J, Gu C S, Bao T F, Zhang L, Yu H 2010 Sci. China Tech. Sci. 53 1711

    [15]

    He W P, Wang L, Wan S Q, Liao L J, He T 2012 Acta Phys. Sin. 61 119201 (in Chinese) [何文平, 王柳, 万仕全, 廖乐健, 何涛 2012 61 119201]

    [16]

    Wang J J, Yan H, Wei P 2010 Acta Phys. Sin. 59 7635 (in Chinese) [王姣姣, 闫华, 魏平 2010 59 7635]

    [17]

    Zhang C T, Ma Q L, Peng H 2010 Acta Phys. Sin. 59 7623 (in Chinese) [张春涛, 马千里, 彭宏 2010 59 7623]

    [18]

    Wang X Y, Han M, Wang Y N 2013 Acta Phys. Sin. 62 050504 (in Chinese) [王新迎, 韩敏, 王亚楠 2013 62 050504]

    [19]

    Trendafilova I 2003 Key Engineer. Mater. 245-246 547

    [20]

    Nichols J M, Virgin L N, Todd M D, Nichols J D 2003 Mech. Syst. Signal Pr. 17 1305

    [21]

    Chelidze D, Cusumano J P, Chatterjee A 2001 Proceedings of the SPIE-The International Society for Optical Engineering 4389 12

    [22]

    Chelidze D, Liu M 2006 Nonlinear Dynam. 46 61

    [23]

    Chelidze D, Liu M 2008 Phil. Trans. R. Soc. A 366 729

    [24]

    Segala D, Chelidze D, Adams A, Schiman J, Piscitelle L, Hasselquist L 2008 Proceedings of the IDETC/CIE 2008 ASME International Mechanical Engineering Congress and Exposition Boston, USA, October 31-November 6, 2008 p1

    [25]

    Chelidze D, Zhou W 2006 J. Sound Vib. 292 461

    [26]

    Segala D, Gates D H, Dingwell J B, Chelidze D 2011 J. Biomech. Eng. 133 031009

    [27]

    Fraser A M, Swinney H L 1986 Phys. Rev. A 33 1134

    [28]

    Kennel M, Brown R, Abarbanel H 1992 Phys. Rev. A 45 3403

    [29]

    Antoni J, Randall R B 2003 J. Vib. Acoust. 125 282

    [30]

    Fan B, Hu N, Hu L, Gu F 2012 J. Phys.: Conf. Ser. 364 012025

    [31]

    Maio F D, Tsui K L, Zio E 2012 Mech. Syst. Signal Pr. 31 405

  • [1]

    Song J W, Mei X Z, Guo Y 2005 Bearing 12 28 (in Chinese) [宋京伟, 梅秀庄, 郭云 2005 轴承 12 28]

    [2]

    Kang H Y, Luan J Y, Zheng H Q, Cui Q B 2007 Chin. J. Mech. Engineer. 43 119 (in Chinese) [康海英, 栾军英, 郑海起, 崔清斌 2007 机械工程学报 43 119]

    [3]

    Liu J T, Du P A, Zhang Z Y 2012 Sci. China Tech. Sci. 55 673

    [4]

    Xu G, Luo Z G, Li M Y, Chen P 2001 Chin. J. Mech. Engineer. 37 104 (in Chinese) [徐刚, 骆志高, 李明义, 陈鹏 2001 机械工程学报 37 104]

    [5]

    Renaudin L, Bonnardot F, Musy O, Doray J B, Rémond D 2010 Mech. Syst. Signal Pr. 24 1998

    [6]

    Shao Y, Nezu K 2000 P. I. Mech. Eng. I: J. Sys. 214 217

    [7]

    Sutrisno E, Oh H, Vasan A S S, Pecht M 2012 Prognostics and Health Management (PHM) 2012 IEEE Conference Denver, USA, June 18-21, 2012 p1

    [8]

    Takens F 1981 Lecture Notes Math. 898 366

    [9]

    Sauer T, Yorke J A, Casdagli M 1991 J. Statist. Phys. 65 579

    [10]

    Gan J C, Xiao X C 2003 Acta Phys. Sin. 52 1096 (in Chinese) [甘建超, 肖先赐 2003 52 1096]

    [11]

    Wang G L, Yang P C, Mao Y Q 2008 Acta Phys. Sin. 57 714 (in Chinese) [王革丽, 杨培才, 毛宇清 2008 57 714]

    [12]

    Zhang S Q, Jia J, Gao M, Han X 2010 Acta Phys. Sin. 59 1576 (in Chinese) [张淑清, 贾健, 高敏, 韩叙 2010 59 1576]

    [13]

    Liu J, Shi S T, Zhao J C 2013 Chin. Phys. B 22 010505

    [14]

    Zhang Z J, Gu C S, Bao T F, Zhang L, Yu H 2010 Sci. China Tech. Sci. 53 1711

    [15]

    He W P, Wang L, Wan S Q, Liao L J, He T 2012 Acta Phys. Sin. 61 119201 (in Chinese) [何文平, 王柳, 万仕全, 廖乐健, 何涛 2012 61 119201]

    [16]

    Wang J J, Yan H, Wei P 2010 Acta Phys. Sin. 59 7635 (in Chinese) [王姣姣, 闫华, 魏平 2010 59 7635]

    [17]

    Zhang C T, Ma Q L, Peng H 2010 Acta Phys. Sin. 59 7623 (in Chinese) [张春涛, 马千里, 彭宏 2010 59 7623]

    [18]

    Wang X Y, Han M, Wang Y N 2013 Acta Phys. Sin. 62 050504 (in Chinese) [王新迎, 韩敏, 王亚楠 2013 62 050504]

    [19]

    Trendafilova I 2003 Key Engineer. Mater. 245-246 547

    [20]

    Nichols J M, Virgin L N, Todd M D, Nichols J D 2003 Mech. Syst. Signal Pr. 17 1305

    [21]

    Chelidze D, Cusumano J P, Chatterjee A 2001 Proceedings of the SPIE-The International Society for Optical Engineering 4389 12

    [22]

    Chelidze D, Liu M 2006 Nonlinear Dynam. 46 61

    [23]

    Chelidze D, Liu M 2008 Phil. Trans. R. Soc. A 366 729

    [24]

    Segala D, Chelidze D, Adams A, Schiman J, Piscitelle L, Hasselquist L 2008 Proceedings of the IDETC/CIE 2008 ASME International Mechanical Engineering Congress and Exposition Boston, USA, October 31-November 6, 2008 p1

    [25]

    Chelidze D, Zhou W 2006 J. Sound Vib. 292 461

    [26]

    Segala D, Gates D H, Dingwell J B, Chelidze D 2011 J. Biomech. Eng. 133 031009

    [27]

    Fraser A M, Swinney H L 1986 Phys. Rev. A 33 1134

    [28]

    Kennel M, Brown R, Abarbanel H 1992 Phys. Rev. A 45 3403

    [29]

    Antoni J, Randall R B 2003 J. Vib. Acoust. 125 282

    [30]

    Fan B, Hu N, Hu L, Gu F 2012 J. Phys.: Conf. Ser. 364 012025

    [31]

    Maio F D, Tsui K L, Zio E 2012 Mech. Syst. Signal Pr. 31 405

  • [1] 景鹏, 张学军, 孙知信. 基于弹性变分模态分解的癫痫脑电信号分类方法.  , 2021, 70(1): 018702. doi: 10.7498/aps.70.20200904
    [2] 许子非, 岳敏楠, 李春. 优化递归变分模态分解及其在非线性信号处理中的应用.  , 2019, 68(23): 238401. doi: 10.7498/aps.68.20191005
    [3] 刘备, 胡伟鹏, 邹孝, 丁亚军, 钱盛友. 基于变分模态分解与多尺度排列熵的生物组织变性识别.  , 2019, 68(2): 028702. doi: 10.7498/aps.68.20181772
    [4] 杜义浩, 齐文靖, 邹策, 张晋铭, 谢博多, 谢平. 基于变分模态分解-相干分析的肌间耦合特性.  , 2017, 66(6): 068701. doi: 10.7498/aps.66.068701
    [5] 袁铮, 董建军, 李晋, 陈韬, 张文海, 曹柱荣, 杨志文, 王静, 赵阳, 刘慎业, 杨家敏, 江少恩. 分幅变像管动态空间分辨率的标定.  , 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [6] 谢平, 杨芳梅, 李欣欣, 杨勇, 陈晓玲, 张利泰. 基于变分模态分解-传递熵的脑肌电信号耦合分析.  , 2016, 65(11): 118701. doi: 10.7498/aps.65.118701
    [7] 胡金秀, 高效伟. 变系数瞬态热传导问题边界元格式的特征正交分解降阶方法.  , 2016, 65(1): 014701. doi: 10.7498/aps.65.014701
    [8] 逯志宇, 王大鸣, 王建辉, 王跃. 基于时频差的正交容积卡尔曼滤波跟踪算法.  , 2015, 64(15): 150502. doi: 10.7498/aps.64.150502
    [9] 唐洁. 基于集合经验模态分解的类星体光变周期及其混沌特性分析.  , 2014, 63(4): 049701. doi: 10.7498/aps.63.049701
    [10] 赵延来, 黄思训, 杜华栋. 基于变分方法的有限区域风场分解与重构I: 理论框架和仿真实验.  , 2013, 62(3): 039204. doi: 10.7498/aps.62.039204
    [11] 卞保民, 赖小明, 杨玲, 李振华, 贺安之. 空间变尺度因子球坐标系与四维时空度规.  , 2012, 61(8): 080401. doi: 10.7498/aps.61.080401
    [12] 杨振军, 李少华, 陆大全, 胡巍. 非局域非线性克尔介质中两极孤子的变分解.  , 2010, 59(7): 4707-4714. doi: 10.7498/aps.59.4707
    [13] 戴继慧, 郭 旗. 非局域非线性介质中光束传输的拉盖尔-高斯变分解.  , 2008, 57(8): 5001-5006. doi: 10.7498/aps.57.5001
    [14] 曹小群, 黄思训, 杜华栋. 变分同化中水平误差函数的正交小波模拟新方法.  , 2008, 57(3): 1984-1989. doi: 10.7498/aps.57.1984
    [15] 张 毅. 事件空间中力学系统的微分变分原理.  , 2007, 56(2): 655-660. doi: 10.7498/aps.56.655
    [16] 姜可宇, 蔡志明. 变尺度概率净化法的优化.  , 2005, 54(10): 4596-4601. doi: 10.7498/aps.54.4596
    [17] 傅喜泉, 郭弘, 胡巍, 刘承宜, 王筱平. 超短脉冲光束传输缓变包络近似理论的失效和空间奇异性的形成与消除.  , 2001, 50(9): 1693-1698. doi: 10.7498/aps.50.1693
    [18] 周世平, 徐克西. 负介电媒质观点下超导边值问题的变分解.  , 1996, 45(9): 1551-1561. doi: 10.7498/aps.45.1551
    [19] 冯伟国, 孙鑫. 金属电子关联函数的实空间变分计算.  , 1986, 35(5): 598-604. doi: 10.7498/aps.35.598
    [20] 林鸿荪. 具複联通截面柱体的扭转问题的变分解法.  , 1953, 9(4): 221-237. doi: 10.7498/aps.9.221
计量
  • 文章访问数:  6392
  • PDF下载量:  794
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-08
  • 修回日期:  2013-04-28
  • 刊出日期:  2013-08-05

/

返回文章
返回
Baidu
map