-
基于电化学-热耦合模型研究聚合物锂离子动力电池放电过程热行为, 分析了放电倍率、冷却条件对电池放电过程的温度变化及分布的影响规律. 结果表明: 3C放电时, 模型计算结果与实测结果的平均偏差为0.57 K, 方差为0.15, 说明模型准确度较高. 电芯的平均生热率在整个放电过程中呈现出增加的趋势, 初期和末期增长较快. 大倍率放电时, 与电流密度的平方呈正比的不可逆热所占的比重较大, 小倍率放电时, 电化学反应可逆热占主导. 改善冷却条件能降低电池放电过程的平均温度, 对流传热过程的表面传热系数为5 W/(m2·K), 1 C, 3 C, 5 C放电结束时, 电芯的平均温升为分别为6.46 K, 17.67 K, 27.53 K, 当对流传热过程的表面传热系数增加至25 W/(m2·K)时, 温升比自然对流条件下相同倍率放电时的温度分别降低了2.91 K, 4.68 K, 5.62 K, 但电芯温度分布的不一致性也会加剧.To understand the thermal effect of polymer Li-ion cells during the discharge process, an electrochemical thermal coupling model was established to investigate the thermal behavior of the cell. The average deviation and variance between the modeling results and the experimental data at 3C discharge rate were 0.57 K and 0.15, thus it was concluded that the modeling results agreed well with the experimental data. Also, the model is used to analyze the temperature distribution affected by discharge rate and cooling condition. The average heat production rate of the cells shows an increasing trend throughout the discharge process; it is increased significantly at both the beginning and the end of discharge. At a high discharge current, the irreversible heating which is proportional to the square of the current density, is the major heat generation source inside the battery. At a low discharge current, the heat production rate is dominated by reversible entropic heat. Improving cooling temperature could lower the average temperature during the discharge process. When the heat coefficient is 5 W/(m2·K), the average temperature rises of the battery cells are 6.46 K, 17.67 K, 27.53 K for 1C, 3C, 5C discharge rates respectively. If the heat coefficient increases to 25 W/(m2·K), the average temperatures of the battery cells are reduced by 2.91 K, 4.68 K, 5.62 K for 1C, 3C, 5C discharge rates, respectively, but the inner temperature difference would be increased.
-
Keywords:
- electrochemistry /
- coupling /
- power lithium ion battery /
- temperature distribution
[1] Li J, Yang C Z, Zhang X G, Zhang J, Xia B J 2009 Acta Phys. Sin. 58 6573 (in Chinese) [李佳, 杨传铮, 张熙贵, 张建, 夏保佳 2009 58 6573]
[2] Hu G J, Ouyang C Y 2010 Acta Phys. Sin. 59 5863 (in Chinese) [胡国进, 欧阳楚英 2010 59 5863]
[3] Bernardi D, Powlikowski E, Newman J 1985 J. Electrochem. Soc. 132 5
[4] Al-Hallaj S, Selman J R 2002 J. Power Source 110 341
[5] Wu M S, Liu K H, Wang Y Y, Wan C C 2002 J. Power Source. 109 160
[6] Jeon D H, Baek S M 2011 Energy Conversion and Management 52 2973
[7] Lin C T, Li T, Chen Q S 2010 Acta Armamentarii. 31 88 (in Chinese) [林成涛, 李腾, 陈全世 2010 兵工学报 31 88]
[8] Chen S C, Wan C C, Wang Y Y 2005 J. Power Source. 140 111
[9] Ghosh D, Maguire P D, Zhu D X 2009 SAE World Congress Detroit, Michigan, USA, April 20-23, 2009 p1386
[10] Ghosh D, King K, Schwenmin B, Zhu D 2010 SAE World Congress Detroit, Michigan, USA, April 13-15, 2010 p1080
[11] Ma Y, Teng H, Thelliez M 2010 Ghosh D, King K, Schwenmin B, Zhu D 2010 SAE World Congress Detroit, Michigan, USA, April 13-15, 2010 p2204
[12] Kumaresan K, Sikha G, White R E 2008 J. Electrochem. Soc. 155 A164
[13] Gu W B, Wang C Y 2000 J. Electrochem. Soc. 147 2910
[14] Gerver R E, Meyers J P 2011 J. Electrochem. Soc. 158 A835
[15] Doyle M, Newman J 1995 Electrochimica Acta. 40 2191
[16] Nyman A, Zavalis T G, Elger R, Behm M, Lindbergh G 2010 J. Electrochem. Soc. 157 A1236
[17] Smith K, Wang C Y 2006 J. Power Source. 160 662
[18] Jin W R, Lu S G, Pang J 2011 Chinese journal of Inorganic Chemistry 27 1675 (in Chinese) [靳尉仁, 卢世刚, 庞静 2011 无机化学学报 27 1675]
[19] Pesaran A A, Burch S D, Keyser M 1999 4th Vehicle Thermal Management Systems Conference and Exhibition London, UK, May 24–27
[20] Che D L 2009 Master Dissertation (Wuhan: Wuhan University of technology) (in Chinese) [车杜兰 2009 硕士学位论文 (武汉: 武汉理工大学)]
[21] Li W C, Lu S G 2010 The Chinese Journal of Nonferrous Metals 22 1156 (in Chinese) [李文成, 卢世刚 2010 中国有色金属学报 22 1156]
[22] Yang K, An J J, Chen S 2010 J. Them anal Calorim. 99 515
[23] Al-Hallaj S, Maleki H, Hong J S, Selman J R 1999 J. Power Source 83 1
-
[1] Li J, Yang C Z, Zhang X G, Zhang J, Xia B J 2009 Acta Phys. Sin. 58 6573 (in Chinese) [李佳, 杨传铮, 张熙贵, 张建, 夏保佳 2009 58 6573]
[2] Hu G J, Ouyang C Y 2010 Acta Phys. Sin. 59 5863 (in Chinese) [胡国进, 欧阳楚英 2010 59 5863]
[3] Bernardi D, Powlikowski E, Newman J 1985 J. Electrochem. Soc. 132 5
[4] Al-Hallaj S, Selman J R 2002 J. Power Source 110 341
[5] Wu M S, Liu K H, Wang Y Y, Wan C C 2002 J. Power Source. 109 160
[6] Jeon D H, Baek S M 2011 Energy Conversion and Management 52 2973
[7] Lin C T, Li T, Chen Q S 2010 Acta Armamentarii. 31 88 (in Chinese) [林成涛, 李腾, 陈全世 2010 兵工学报 31 88]
[8] Chen S C, Wan C C, Wang Y Y 2005 J. Power Source. 140 111
[9] Ghosh D, Maguire P D, Zhu D X 2009 SAE World Congress Detroit, Michigan, USA, April 20-23, 2009 p1386
[10] Ghosh D, King K, Schwenmin B, Zhu D 2010 SAE World Congress Detroit, Michigan, USA, April 13-15, 2010 p1080
[11] Ma Y, Teng H, Thelliez M 2010 Ghosh D, King K, Schwenmin B, Zhu D 2010 SAE World Congress Detroit, Michigan, USA, April 13-15, 2010 p2204
[12] Kumaresan K, Sikha G, White R E 2008 J. Electrochem. Soc. 155 A164
[13] Gu W B, Wang C Y 2000 J. Electrochem. Soc. 147 2910
[14] Gerver R E, Meyers J P 2011 J. Electrochem. Soc. 158 A835
[15] Doyle M, Newman J 1995 Electrochimica Acta. 40 2191
[16] Nyman A, Zavalis T G, Elger R, Behm M, Lindbergh G 2010 J. Electrochem. Soc. 157 A1236
[17] Smith K, Wang C Y 2006 J. Power Source. 160 662
[18] Jin W R, Lu S G, Pang J 2011 Chinese journal of Inorganic Chemistry 27 1675 (in Chinese) [靳尉仁, 卢世刚, 庞静 2011 无机化学学报 27 1675]
[19] Pesaran A A, Burch S D, Keyser M 1999 4th Vehicle Thermal Management Systems Conference and Exhibition London, UK, May 24–27
[20] Che D L 2009 Master Dissertation (Wuhan: Wuhan University of technology) (in Chinese) [车杜兰 2009 硕士学位论文 (武汉: 武汉理工大学)]
[21] Li W C, Lu S G 2010 The Chinese Journal of Nonferrous Metals 22 1156 (in Chinese) [李文成, 卢世刚 2010 中国有色金属学报 22 1156]
[22] Yang K, An J J, Chen S 2010 J. Them anal Calorim. 99 515
[23] Al-Hallaj S, Maleki H, Hong J S, Selman J R 1999 J. Power Source 83 1
计量
- 文章访问数: 6411
- PDF下载量: 888
- 被引次数: 0