-
基于一类新的Lie超代数, 介绍了构造超孤子族非线性可积耦合的一般方法. 由相应圈超代数上的超迹恒等式, 可以得到超孤子族非线性可积偶的超哈密顿结构. 作为应用, 给出了超 Kaup-Newell 族的非线性可积耦合及其超哈密顿结构, 这种方法还可以推广到其他的超孤子族.
-
关键词:
- Lie超代数 /
- 超迹恒等式 /
- 超Kaup-Newell族 /
- 非线性可积耦合
Based on a kind of new Lie superalgebras, we introduce the general method of constructing the nonlinear integrable couplings of super soliton hierarchy. Super trace identity over the corresponding loop superalgebras is used to obtain the super Hamiltonian structures for the resulting nonlinear integrable couplings of the super soliton hierarchy. As an application, we give the nonlinear integrable couplings of super Kaup-Newell hierarchy and its super Hamiltonian structures. This method can be generalized to other super soliton hierarchy.-
Keywords:
- Lie superalgebras /
- super trace identity /
- super Kaup-Newell hierarchy /
- nonlinear integrable couplings
[1] Zhang Y F, Zhang H Q, Yan Q Y 2002 Phys. Lett. A 299 543
[2] Cheng X P, Li J Y, Xue J R 2011 Acta Phys. Sin. 60 110204 (in Chinese) [程雪苹, 李金玉, 薛江蓉 2011 60 110204]
[3] Taogetusang, Sirendaoerji 2010 Acta Phys. Sin. 59 5194 (in Chinese) [套格图桑, 斯仁道尔吉 2010 59 5194]
[4] Ma W X, Xu X X, Zhang Y F 2006 Phys. Lett. A 351 125
[5] Zhou X C, Lin W T, Lin Y H, Mo J Q 2012 Acta Phys. Sin. 61 240202 (in Chinese) [周先春, 林万涛, 林一骅, 莫嘉琪 2012 61 240202]
[6] Yu F J, Li L 2009 Chin. Phys. B 18 3651
[7] Yu F J, Li L 2008 Chin. Phys. B 17 3965
[8] Yu F J 2008 Chin. Phys. Lett. 25 3519
[9] Shi L F, Lin W T, Lin Y H, Mo J Q 2013 Acta Phys. Sin. 62 010201 (in Chinese) [石兰芳, 林万涛, 林一骅, 莫嘉琪 2013 62 010201]
[10] Yu F J 2008 Chin. Phys. Lett. 25 359
[11] Xia T C 2010 Commun. Theor. Phys. 53 25
[12] Ma W X, Fushssteiner B 1996 Chaos Soliton. Fract. 7 1227
[13] Ma W X, Fushssteiner B 1996 Phys. Lett. A 213 49
[14] Ma W X 2011 Appl. Math. Comput. 217 7238
[15] Ma W X, Zhu Z N 2010 Comput. Math. Appl. 60 2601
[16] Yu F J 2012 Chin. Phys. B 21 010201
[17] Li Z, Dong H H, Yang H W 2009 Int. J. Theor. Phys. 48 2172
[18] Li Z 2009 Modern Phys. Lett. B 23 2907
[19] Tao S X, Xia T C 2010 Chin. Phys. Lett. 27 040202
[20] Tao S X, Xia T C 2010 Chin. Phys. B 19 070202
[21] Tao S X, Wang H, Shi H 2011 Chin. Phys. B 20 070201
[22] Yu F J, Zhang H Q 2008 Chin. Phys. B 17 1574
[23] Yu F J 2011 Chin. Phys. Lett. 28 120201
[24] Yang H X, Du J, Xu X X 2010 Appl. Math. Comput. 217 1497
[25] Yang H X, Sun Y P 2010 Int. J. Theor. Phys. 49 349
[26] Zhu L L, Yang H X, Chen L X 2010 Chin. J. Phys. 48 719
[27] Tao S X, Xia T C, Shi H 2011 Commun. Theor. Phys. 55 391
[28] You F C 2011 J. Math. Phys. 52 123510
[29] Hu X B 1997 J. Phys. A: Math. Gen. 30 619
[30] Ma W X, He J S, Qin Z Y 2008 J. Math. Phys. 49 033511
-
[1] Zhang Y F, Zhang H Q, Yan Q Y 2002 Phys. Lett. A 299 543
[2] Cheng X P, Li J Y, Xue J R 2011 Acta Phys. Sin. 60 110204 (in Chinese) [程雪苹, 李金玉, 薛江蓉 2011 60 110204]
[3] Taogetusang, Sirendaoerji 2010 Acta Phys. Sin. 59 5194 (in Chinese) [套格图桑, 斯仁道尔吉 2010 59 5194]
[4] Ma W X, Xu X X, Zhang Y F 2006 Phys. Lett. A 351 125
[5] Zhou X C, Lin W T, Lin Y H, Mo J Q 2012 Acta Phys. Sin. 61 240202 (in Chinese) [周先春, 林万涛, 林一骅, 莫嘉琪 2012 61 240202]
[6] Yu F J, Li L 2009 Chin. Phys. B 18 3651
[7] Yu F J, Li L 2008 Chin. Phys. B 17 3965
[8] Yu F J 2008 Chin. Phys. Lett. 25 3519
[9] Shi L F, Lin W T, Lin Y H, Mo J Q 2013 Acta Phys. Sin. 62 010201 (in Chinese) [石兰芳, 林万涛, 林一骅, 莫嘉琪 2013 62 010201]
[10] Yu F J 2008 Chin. Phys. Lett. 25 359
[11] Xia T C 2010 Commun. Theor. Phys. 53 25
[12] Ma W X, Fushssteiner B 1996 Chaos Soliton. Fract. 7 1227
[13] Ma W X, Fushssteiner B 1996 Phys. Lett. A 213 49
[14] Ma W X 2011 Appl. Math. Comput. 217 7238
[15] Ma W X, Zhu Z N 2010 Comput. Math. Appl. 60 2601
[16] Yu F J 2012 Chin. Phys. B 21 010201
[17] Li Z, Dong H H, Yang H W 2009 Int. J. Theor. Phys. 48 2172
[18] Li Z 2009 Modern Phys. Lett. B 23 2907
[19] Tao S X, Xia T C 2010 Chin. Phys. Lett. 27 040202
[20] Tao S X, Xia T C 2010 Chin. Phys. B 19 070202
[21] Tao S X, Wang H, Shi H 2011 Chin. Phys. B 20 070201
[22] Yu F J, Zhang H Q 2008 Chin. Phys. B 17 1574
[23] Yu F J 2011 Chin. Phys. Lett. 28 120201
[24] Yang H X, Du J, Xu X X 2010 Appl. Math. Comput. 217 1497
[25] Yang H X, Sun Y P 2010 Int. J. Theor. Phys. 49 349
[26] Zhu L L, Yang H X, Chen L X 2010 Chin. J. Phys. 48 719
[27] Tao S X, Xia T C, Shi H 2011 Commun. Theor. Phys. 55 391
[28] You F C 2011 J. Math. Phys. 52 123510
[29] Hu X B 1997 J. Phys. A: Math. Gen. 30 619
[30] Ma W X, He J S, Qin Z Y 2008 J. Math. Phys. 49 033511
计量
- 文章访问数: 6194
- PDF下载量: 574
- 被引次数: 0