-
为了改善金属氧化物半导体场效应管(MOSFET) 的短沟道效应(SCE)、 漏致势垒降低(DIBL) 效应, 提高电流的驱动能力, 提出了单Halo 全耗尽应变硅绝缘体 (SOI) MOSFET 结构, 该结构结合了应变Si, 峰值掺杂Halo结构, SOI 三者的优点. 通过求解二维泊松方程, 建立了全耗尽器件表面势和阈值电压的解析模型. 模型中分析了弛豫层中的Ge组分对表面势、表面场强和阈值电压的影响, 不同漏电压对表面势的影响, Halo 掺杂对阈值电压和DIBL的影响.结果表明, 该新结构能够抑制SCE和DIBL效应, 提高载流子的输运效率.A single Halo fully depleted strain Si Silicon-On-insulator (SOI) structure, which has the advantages of strained Si, Halo doping, and SOI structure, is proposed to improve driving current, suppress the short channel effect (SCE) and drain induced barrier lowering (DIBL) effect. A two-dimensional analytical model for the surface potential, the surface electric field and the threshold voltage is proposed by solving Poisson's equation. The effects of Ge fraction in the relaxed layer on surface potential and threshold voltage are investigated. In the paper we analyze the influence of drain voltage on surface potential. Finally the effects of Halo doping on threshold voltage and DIBL are investigated. The results show that the novel device can suppress the short channel effect and DIBL effect, and increase carrier transport speed.
[1] He J, Chan M, Xi X M 2006 Chin. J. Semicond. 27 388
[2] Murali R, Austin B L, Wang L 2004 IEEE Trans. Electron Dev. 51 940
[3] Wang X Y, Zhang H M, Song J J, Ma J L, Wang G Y, An J H 2011 Acta Phys. Sin. 60 077205 (in Chinese) [王晓艳, 张鹤鸣, 宋建军, 马建立, 王冠宇, 安久华 2011 60 077205]
[4] Li J, Liu H X, Li B, Cao L, Yuan B 2010 Acta Phys. Sin. 59 8131 (in Chinese) [李劲, 刘红侠, 李斌, 曹磊, 袁博 2010 59 8131]
[5] Qu J T, Zhang H M, Qin S S, Xu X B, Wang X Y, Hu H Y 2011 Acta Phys. Sin. 60 098501 (in Chinese) [屈江涛, 张鹤鸣, 秦珊珊, 徐小波, 王晓艳, 胡辉勇2011 60 098501]
[6] Li Z C 2008 Chin. Phys. B 17 4312
[7] Djeffal F, Meguellati M, Benhaya A 2009 Physica E 41 1872
[8] Reddy G V, Kumar M J 2004 Microelectron. J. 35 761
[9] Venkataraman V, Nawal S, Kummer M J 2007 IEEE Trans. Electron Dev. 54 554
[10] Kummer M J, Venkataraman V, Nawal S 2006 IEEE Trans. Electron Dev. 53 364
[11] Young K K 1989 IEEE Trans. Electron Dev. 36 399
[12] Reddy G V, Kumar M J 2005 IEEE Trans. Nanotechnol. 4 260
-
[1] He J, Chan M, Xi X M 2006 Chin. J. Semicond. 27 388
[2] Murali R, Austin B L, Wang L 2004 IEEE Trans. Electron Dev. 51 940
[3] Wang X Y, Zhang H M, Song J J, Ma J L, Wang G Y, An J H 2011 Acta Phys. Sin. 60 077205 (in Chinese) [王晓艳, 张鹤鸣, 宋建军, 马建立, 王冠宇, 安久华 2011 60 077205]
[4] Li J, Liu H X, Li B, Cao L, Yuan B 2010 Acta Phys. Sin. 59 8131 (in Chinese) [李劲, 刘红侠, 李斌, 曹磊, 袁博 2010 59 8131]
[5] Qu J T, Zhang H M, Qin S S, Xu X B, Wang X Y, Hu H Y 2011 Acta Phys. Sin. 60 098501 (in Chinese) [屈江涛, 张鹤鸣, 秦珊珊, 徐小波, 王晓艳, 胡辉勇2011 60 098501]
[6] Li Z C 2008 Chin. Phys. B 17 4312
[7] Djeffal F, Meguellati M, Benhaya A 2009 Physica E 41 1872
[8] Reddy G V, Kumar M J 2004 Microelectron. J. 35 761
[9] Venkataraman V, Nawal S, Kummer M J 2007 IEEE Trans. Electron Dev. 54 554
[10] Kummer M J, Venkataraman V, Nawal S 2006 IEEE Trans. Electron Dev. 53 364
[11] Young K K 1989 IEEE Trans. Electron Dev. 36 399
[12] Reddy G V, Kumar M J 2005 IEEE Trans. Nanotechnol. 4 260
计量
- 文章访问数: 6994
- PDF下载量: 373
- 被引次数: 0