-
本文采用分数维方法, 在讨论Al0.3Ga0.7As衬底上GaAs薄膜的分数维基础上, 计算了GaAs薄膜中的极化子结合能和有效质量. 随着薄膜厚度的增加, 极化子结合能和质量变化单调地减小. 当薄膜厚度Lw70 并且衬底厚度Lb200 时, 衬底厚度的变化对薄膜中极化子的结合能和质量变化的影响比较显著, 随着衬底厚度的增加, 薄膜中极化子的结合能和质量变化逐渐变大; 当薄膜厚度Lw70 或者衬底厚度Lb200 时, 衬底厚度的变化对薄膜中极化子的结合能和质量变化的影响不显著. 研究结果为GaAs薄膜电子和光电子器件的研究和应用提供参考.Within the framework of the fraction-dimensional space approach, the binding energy and the effective mass of a polaron confined in a GaAs film deposited on Al0.3Ga0.7As substrate have been investigated. It is shown that the polaron binding energy and mass shift decrease monotonously with increasing film thickness. For the film thickness of Lw70 and the substrate thickness of Lb200 , the substrate thickness will influence the polaron binding energy and mass shift. The polaron binding energy and mass shift increase with increasing substrate thickness. In the region Lw70 or Lb200 , the substrate thickness has no influence on the polaron binding energy and mass shift.
[1] Wang Z P, Liang X X 2005 Chin. Phys. Lett. 22 2367
[2] Zhao F Q, Zhou B Q 2007 Acta Phys. Sin. 56 4856 (in Chinese) [赵凤岐, 周炳卿 2007 56 4856]
[3] Yu Y F, Xiao J L, Yin J W, Wang Z W 2008 Chin. Phys. B 17 2236
[4] He X F 1987 Solid State Commun. 61 53 He X F 1990 Solid State Commun. 75 111
[5] He X F 1990 Phys. Rev. B 42 11751 He X F 1991 Phys. Rev. B 43 2063
[6] Mathieu H, Lefebvre P, Christol P 1992 Phys. Rev. B 46 4092
[7] Lefebvre P, Christol P, Mathieu H 1992 Phys. Rev. B 46 13603
[8] Christol P, Lefebvre P, Mathieu H 1993 J. Appl. Phys. 74 5626
[9] de Dios-Leyva M, Bruno-Alfonso A, Matos-Abiague A, Oliveira L E 1997 J. Phys.: Condens. Matter 9 8477
[10] Matos-Abiague A, Oliveira L E, de Dios-Leyva M 1998 Phys. Rev. B 58 4072
[11] Wang Z P, Liang X X 2009 Phys. Lett. A 373 2596
[12] Zhao Q X, Monemar B, Holtz P O, Willander M, Fimland B O, Johannessen K 1994 Phys. Rev. B 50 4476
[13] Reyes-Gómez E, Matos-Abiague A, Perdomo-Leiva C A, de Dios-Leyva M, Oliveira L E 2000 Phys. Rev. B 61 13104
[14] Singh J, Birkedal D, Lyssenko V G, Hvam J M 1996 Phys. Rev. B 53 15909
[15] Thilagam A 1997 Phys. Rev. B 55 7804
[16] Wang Z P, Liang X X 2010 Solid State Commun. 150 356
[17] Matos-Abiague A, Oliveira L E, de Dios-Leyva M 2001 Physica B 296 342
[18] Reyes-Gómez E, Perdomo-Leiva C A, Oliveira L E, de Dios-Leyva M 2000 Physica E 8 239
[19] Oliveira L E, Duque C A, Porras-Montenegro N, de Dios-Leyva M 2001 Physica B 302-303 72
[20] Reyes-Gómez E, Oliveira L E, de Dios-Leyva M 1999 J. Appl. Phys. 85 4045
[21] Mikhailov I D, Betancur F J, Escorcia R A, Sierra-Ortega J 2003 Phys. Rev. B 67 115317
[22] Kundrotas J, Črškus A, Ašmontas S, Valušis G 2005 Phys. Rev. B 72 235322
[23] Kundrotas J, Črškus A, Ašmontas S, Valušis G, Halsall M P, Johannessen E, Harrison P 2007 Semicond. Sci. Technol. 22 1070
[24] Matos-Abiague A 2002 J. Phys.: Condens. Matter 14 4543
[25] Matos-Abiague A 2002 Semicond. Sci. Technol. 17 150
[26] Matos-Abiague A 2002 Phys. Rev. B 65 165321
[27] Rodrí}guez Suárez R L, Matos-Abiague A 2003 Physica E 18 485
[28] Thilagam A Matos-Abiague A 2004 J. Phys.: Condens. Matter 16 3981
[29] Wang Z P, Liang X X, Wang X 2007 Eur. Phys. J. B 59 41
[30] Deng Y P, Lv B B, Tian Q 2010 Acta Phys. Sin. 59 4961 (in Chinese) [邓艳平, 吕彬彬, 田强 2010 59 4961]
[31] Deng Y P Tian Q 2011 Sci. China: Phys. Mech. Astron. 54 1593
-
[1] Wang Z P, Liang X X 2005 Chin. Phys. Lett. 22 2367
[2] Zhao F Q, Zhou B Q 2007 Acta Phys. Sin. 56 4856 (in Chinese) [赵凤岐, 周炳卿 2007 56 4856]
[3] Yu Y F, Xiao J L, Yin J W, Wang Z W 2008 Chin. Phys. B 17 2236
[4] He X F 1987 Solid State Commun. 61 53 He X F 1990 Solid State Commun. 75 111
[5] He X F 1990 Phys. Rev. B 42 11751 He X F 1991 Phys. Rev. B 43 2063
[6] Mathieu H, Lefebvre P, Christol P 1992 Phys. Rev. B 46 4092
[7] Lefebvre P, Christol P, Mathieu H 1992 Phys. Rev. B 46 13603
[8] Christol P, Lefebvre P, Mathieu H 1993 J. Appl. Phys. 74 5626
[9] de Dios-Leyva M, Bruno-Alfonso A, Matos-Abiague A, Oliveira L E 1997 J. Phys.: Condens. Matter 9 8477
[10] Matos-Abiague A, Oliveira L E, de Dios-Leyva M 1998 Phys. Rev. B 58 4072
[11] Wang Z P, Liang X X 2009 Phys. Lett. A 373 2596
[12] Zhao Q X, Monemar B, Holtz P O, Willander M, Fimland B O, Johannessen K 1994 Phys. Rev. B 50 4476
[13] Reyes-Gómez E, Matos-Abiague A, Perdomo-Leiva C A, de Dios-Leyva M, Oliveira L E 2000 Phys. Rev. B 61 13104
[14] Singh J, Birkedal D, Lyssenko V G, Hvam J M 1996 Phys. Rev. B 53 15909
[15] Thilagam A 1997 Phys. Rev. B 55 7804
[16] Wang Z P, Liang X X 2010 Solid State Commun. 150 356
[17] Matos-Abiague A, Oliveira L E, de Dios-Leyva M 2001 Physica B 296 342
[18] Reyes-Gómez E, Perdomo-Leiva C A, Oliveira L E, de Dios-Leyva M 2000 Physica E 8 239
[19] Oliveira L E, Duque C A, Porras-Montenegro N, de Dios-Leyva M 2001 Physica B 302-303 72
[20] Reyes-Gómez E, Oliveira L E, de Dios-Leyva M 1999 J. Appl. Phys. 85 4045
[21] Mikhailov I D, Betancur F J, Escorcia R A, Sierra-Ortega J 2003 Phys. Rev. B 67 115317
[22] Kundrotas J, Črškus A, Ašmontas S, Valušis G 2005 Phys. Rev. B 72 235322
[23] Kundrotas J, Črškus A, Ašmontas S, Valušis G, Halsall M P, Johannessen E, Harrison P 2007 Semicond. Sci. Technol. 22 1070
[24] Matos-Abiague A 2002 J. Phys.: Condens. Matter 14 4543
[25] Matos-Abiague A 2002 Semicond. Sci. Technol. 17 150
[26] Matos-Abiague A 2002 Phys. Rev. B 65 165321
[27] Rodrí}guez Suárez R L, Matos-Abiague A 2003 Physica E 18 485
[28] Thilagam A Matos-Abiague A 2004 J. Phys.: Condens. Matter 16 3981
[29] Wang Z P, Liang X X, Wang X 2007 Eur. Phys. J. B 59 41
[30] Deng Y P, Lv B B, Tian Q 2010 Acta Phys. Sin. 59 4961 (in Chinese) [邓艳平, 吕彬彬, 田强 2010 59 4961]
[31] Deng Y P Tian Q 2011 Sci. China: Phys. Mech. Astron. 54 1593
计量
- 文章访问数: 6511
- PDF下载量: 481
- 被引次数: 0