搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

下电极对ZnO薄膜电阻开关特性的影响

李红霞 陈雪平 陈琪 毛启楠 席俊华 季振国

引用本文:
Citation:

下电极对ZnO薄膜电阻开关特性的影响

李红霞, 陈雪平, 陈琪, 毛启楠, 席俊华, 季振国

Effects of bottom electrode on resistive switching characteristics of ZnO films

Li Hong-Xia, Chen Xue-Ping, Chen Qi, Mao Qi-Nan, Xi Jun-Hua, Ji Zhen-Guo
PDF
导出引用
  • 本文采用直流磁控溅射法在三种不同的下电极(BEs)上制备了ZnO薄膜, 获得了W/ZnO/BEs存储器结构. 研究了不同的下电极材料对器件电阻开关特性的影响. 研究结果表明, 以不同下电极所制备的器件都具有单极性电阻开关特性. 在低阻态时, ZnO薄膜的导电机理为欧姆传导, 而高阻态时薄膜的导电机理为空间电荷限制电流. 不同下电极与ZnO薄膜之间的肖特基势垒高度对电阻开关过程中的操作电压有较大的影响, 并基于导电细丝模型对不同下电极上ZnO薄膜的低阻态阻值及reset电流的变化进行了解释.
    In this paper, thin films of ZnO were deposited on different bottom electrodes (BEs) by DC magnetron sputtering to fabricate resistive random access memory (ReRAM) with a W/ZnO/BEs structure. The effects of different BEs on the resistive switching characteristics of the fabricated device have been investigated. The results reveal that the devices fabricated on different BEs exhibit reversible and steady unipolar resistive switching behaviors. The conduction behavior in the low resistance state has an Ohmic behavior. However, the conduction mechanism in the high resistance state fits well with the classical space charge limited conduction. Schottky barrier heights between ZnO and different BEs have great effect on the operation voltages during the resistive switching processes. The resistances in low resistance state and the reset currents of the ZnO films fabricated on different BEs were discussed based on the filamentary model.
    • 基金项目: 国家自然科学基金 (批准号: 61072015)、浙江省自然科学基金 (批准号: Z4110503, LQ12F05001) 和浙江省教育厅科研项目 (批准号: Y201223083) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61072015), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Z4110503, LQ12F05001), and the Scientific Research Foundation of the Education Department of Zhejiang Province, China (Grant No. Y201223083).
    [1]

    Do Y H, Kwak J S, Bae Y C, Lee J H, Kim Y, Im H, Hong J P 2010 Curr. Appl. Phys. 10 E71

    [2]

    Waser R, Aono M 2007 Nat Mater 6 833

    [3]

    Jo S H, Kim K H, Lu W 2009 Nano Lett. 9 870

    [4]

    Ahn S E, Lee M J, Park Y, Kang B S, Lee C B, Kim KH, Seo S, Suh D S, Kim D C, Hur J, Stefanovich G, Yin H, Yoo I K, Lee J H, Park J B, Baek I G, Park B H 2008 Adv. Mater 20 924

    [5]

    Shi W,Tai Q, Xia X H,Yi M D, Xie L H, Fan Q L, Wang L H, Wei Ang, Huang W 2012 Chin. Phys. Lett. 29 087201

    [6]

    Gang J L, Li S L, Meng Y, Liao Z L, Liang X J, Chen D M 2009 Acta Phys. Sin. 58 5730 (in Chinese) [刚建雷, 黎松林, 孟 洋, 廖昭亮, 梁学锦, 陈东敏 2009 58 5730]

    [7]

    Xing Z W, Chen X, Wu N J, Ignatiev A 2011 Chin. Phys. B 20 097703

    [8]

    Park J W, Jung K, Yang M K, Lee J K 2007 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics Nara-City, Japan, May 27-31,2007,p46

    [9]

    Chang W Y, Lai Y C, Wu T B, Wang S F, Chen F, Tsai M J 2008 Appl. Phys. Lett. 92 022110

    [10]

    Jeong D S, Schroeder H, Waser R 2009 Phys. Rev. B 79 195317

    [11]

    Dong R, Lee D S, Pyun M B, Hasan M, Choi H J, Jo M S, Seong D J, Chang M, Heo S H, Lee J M, Park H K, Hwang H 2008 Appl. Phys. A-Mater. 93 409

    [12]

    Lee C B, Kang B S, Benayad A, Lee M J, Ahn S E, Kim K H, Stefanovich G., Park Y, Yoo I K 2008 Appl. Phys. Lett. 93 042115

    [13]

    Liu K C, Tzeng W H, Chang K M, Chan Y C, Kuo C C, Cheng C W 2010 Microelectronics Reliability 50 670

    [14]

    Xu N, Liu L F, Sun X, Chen C, Wang Y, Han D D, Liu X Y, Han R Q, Kang J F, Yu B 2008 Semicond Sci. Tech. 23 075019

    [15]

    Oh S C, Jung H Y, Lee H 2011 J. Appl. Phys. 109 124511

    [16]

    Kim W G, Rhee S W 2010 Microelectronic Engineering 87 98

    [17]

    YangY C, Pan F, Liu Q ,Liu M, Zeng F 2009 Nano. Lett. 9 1636

    [18]

    Chen G, Song C, Chen Ch, Gao Sh, Zeng F, Pan F 2012 Adv. Mater. 24 3515

    [19]

    Chen X M, Wu G H, Bao D H 2008 Appl. Phys. Lett. 93 093501

    [20]

    Pan F, Chen C, Wang Z S, Yang Y C, Yang J, Zeng F 2010 Progress in Natural Science: Materials International 20 01

    [21]

    Sundaram K B, Khan A 1997 J. Vac. Sci. Technol. A 15 428

    [22]

    Baldo M A, O'Brien D F, Thompson M E, Forrest S R 1999 Phys. Rev. B 60 14422

    [23]

    Alshareef H N, Quevedo-Lopez M A, Majhi P 2011 MRS BULL 36 90

  • [1]

    Do Y H, Kwak J S, Bae Y C, Lee J H, Kim Y, Im H, Hong J P 2010 Curr. Appl. Phys. 10 E71

    [2]

    Waser R, Aono M 2007 Nat Mater 6 833

    [3]

    Jo S H, Kim K H, Lu W 2009 Nano Lett. 9 870

    [4]

    Ahn S E, Lee M J, Park Y, Kang B S, Lee C B, Kim KH, Seo S, Suh D S, Kim D C, Hur J, Stefanovich G, Yin H, Yoo I K, Lee J H, Park J B, Baek I G, Park B H 2008 Adv. Mater 20 924

    [5]

    Shi W,Tai Q, Xia X H,Yi M D, Xie L H, Fan Q L, Wang L H, Wei Ang, Huang W 2012 Chin. Phys. Lett. 29 087201

    [6]

    Gang J L, Li S L, Meng Y, Liao Z L, Liang X J, Chen D M 2009 Acta Phys. Sin. 58 5730 (in Chinese) [刚建雷, 黎松林, 孟 洋, 廖昭亮, 梁学锦, 陈东敏 2009 58 5730]

    [7]

    Xing Z W, Chen X, Wu N J, Ignatiev A 2011 Chin. Phys. B 20 097703

    [8]

    Park J W, Jung K, Yang M K, Lee J K 2007 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics Nara-City, Japan, May 27-31,2007,p46

    [9]

    Chang W Y, Lai Y C, Wu T B, Wang S F, Chen F, Tsai M J 2008 Appl. Phys. Lett. 92 022110

    [10]

    Jeong D S, Schroeder H, Waser R 2009 Phys. Rev. B 79 195317

    [11]

    Dong R, Lee D S, Pyun M B, Hasan M, Choi H J, Jo M S, Seong D J, Chang M, Heo S H, Lee J M, Park H K, Hwang H 2008 Appl. Phys. A-Mater. 93 409

    [12]

    Lee C B, Kang B S, Benayad A, Lee M J, Ahn S E, Kim K H, Stefanovich G., Park Y, Yoo I K 2008 Appl. Phys. Lett. 93 042115

    [13]

    Liu K C, Tzeng W H, Chang K M, Chan Y C, Kuo C C, Cheng C W 2010 Microelectronics Reliability 50 670

    [14]

    Xu N, Liu L F, Sun X, Chen C, Wang Y, Han D D, Liu X Y, Han R Q, Kang J F, Yu B 2008 Semicond Sci. Tech. 23 075019

    [15]

    Oh S C, Jung H Y, Lee H 2011 J. Appl. Phys. 109 124511

    [16]

    Kim W G, Rhee S W 2010 Microelectronic Engineering 87 98

    [17]

    YangY C, Pan F, Liu Q ,Liu M, Zeng F 2009 Nano. Lett. 9 1636

    [18]

    Chen G, Song C, Chen Ch, Gao Sh, Zeng F, Pan F 2012 Adv. Mater. 24 3515

    [19]

    Chen X M, Wu G H, Bao D H 2008 Appl. Phys. Lett. 93 093501

    [20]

    Pan F, Chen C, Wang Z S, Yang Y C, Yang J, Zeng F 2010 Progress in Natural Science: Materials International 20 01

    [21]

    Sundaram K B, Khan A 1997 J. Vac. Sci. Technol. A 15 428

    [22]

    Baldo M A, O'Brien D F, Thompson M E, Forrest S R 1999 Phys. Rev. B 60 14422

    [23]

    Alshareef H N, Quevedo-Lopez M A, Majhi P 2011 MRS BULL 36 90

  • [1] 何朝滔, 卢羽, 李秀林, 陈鹏. 限制电流对Ta/BaTiO3/Al2O3/ITO忆阻器的开关比和稳定性调控.  , 2022, 71(8): 086102. doi: 10.7498/aps.71.20211999
    [2] 韦晓莹, 胡明, 张楷亮, 王芳, 刘凯. 氧化钒薄膜的微结构及阻变特性研究.  , 2013, 62(4): 047201. doi: 10.7498/aps.62.047201
    [3] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究.  , 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [4] 赵艳, 蒋毅坚. ZnO薄膜的激光辐照效应研究.  , 2010, 59(4): 2679-2684. doi: 10.7498/aps.59.2679
    [5] 吴定才, 胡志刚, 段满益, 徐禄祥, 刘方舒, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究.  , 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [6] 隋成华, 蔡萍根, 陈乃波, 魏高尧, 许晓军, 周红. 蓝宝石光纤端面上ZnO薄膜的制备及其温变光学特性.  , 2009, 58(4): 2792-2796. doi: 10.7498/aps.58.2792
    [7] 高立, 张建民. 带隙可调的Al,Mg掺杂ZnO薄膜的制备.  , 2009, 58(10): 7199-7203. doi: 10.7498/aps.58.7199
    [8] 刚建雷, 黎松林, 孟洋, 廖昭亮, 梁学锦, 陈东敏. 点接触金属/Pr0.7Ca0.3MnO3/Pt结构稳定的低电流电阻开关特性.  , 2009, 58(8): 5730-5735. doi: 10.7498/aps.58.5730
    [9] 刘 明, 刘志文, 谷建峰, 秦福文, 马春雨, 张庆瑜. 蓝宝石基片的处理方法对ZnO薄膜生长行为的影响.  , 2008, 57(2): 1133-1140. doi: 10.7498/aps.57.1133
    [10] 谷建峰, 刘志文, 刘 明, 付伟佳, 马春雨, 张庆瑜. Si(001)基片上反应射频磁控溅射ZnO薄膜的两步生长方法.  , 2007, 56(4): 2369-2376. doi: 10.7498/aps.56.2369
    [11] 陈新亮, 薛俊明, 张德坤, 孙 建, 任慧志, 赵 颖, 耿新华. 衬底温度对MOCVD法沉积ZnO透明导电薄膜的影响.  , 2007, 56(3): 1563-1567. doi: 10.7498/aps.56.1563
    [12] 谷建峰, 付伟佳, 刘 明, 刘志文, 马春雨, 张庆瑜. 电化学沉积高c轴取向ZnO薄膜及其光学性能分析.  , 2007, 56(10): 5979-5985. doi: 10.7498/aps.56.5979
    [13] 刘志文, 谷建峰, 付伟佳, 孙成伟, 李 勇, 张庆瑜. 工作气压对磁控溅射ZnO薄膜结晶特性及生长行为的影响.  , 2006, 55(10): 5479-5486. doi: 10.7498/aps.55.5479
    [14] 孙成伟, 刘志文, 张庆瑜. 退火温度对ZnO薄膜结构和发光特性的影响.  , 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [15] 刘志文, 谷建峰, 孙成伟, 张庆瑜. 磁控溅射ZnO薄膜的成核机制及表面形貌演化动力学研究.  , 2006, 55(4): 1965-1973. doi: 10.7498/aps.55.1965
    [16] 孙成伟, 刘志文, 秦福文, 张庆瑜, 刘 琨, 吴世法. 生长温度对磁控溅射ZnO薄膜的结晶特性和光学性能的影响.  , 2006, 55(3): 1390-1397. doi: 10.7498/aps.55.1390
    [17] 赵跃智, 陈长乐, 高国棉, 杨晓光, 袁 孝, 宋宙模. Mn掺杂ZnO薄膜的结构及光学性能研究.  , 2006, 55(6): 3132-3135. doi: 10.7498/aps.55.3132
    [18] 孙贤开, 林碧霞, 朱俊杰, 张 杨, 傅竹西. LP-MOCVD异质外延ZnO薄膜中的应力及对缺陷的影响.  , 2005, 54(6): 2899-2903. doi: 10.7498/aps.54.2899
    [19] 张德恒, 王卿璞, 薛忠营. 不同衬底上的ZnO薄膜紫外光致发光.  , 2003, 52(6): 1484-1487. doi: 10.7498/aps.52.1484
    [20] 林碧霞, 傅竹西, 贾云波, 廖桂红. 非掺杂ZnO薄膜中紫外与绿色发光中心.  , 2001, 50(11): 2208-2211. doi: 10.7498/aps.50.2208
计量
  • 文章访问数:  6954
  • PDF下载量:  1009
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-06
  • 修回日期:  2012-11-27
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map