搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金银合金薄膜的近红外表面等离子体共振传感器研究

张喆 柳倩 祁志美

引用本文:
Citation:

基于金银合金薄膜的近红外表面等离子体共振传感器研究

张喆, 柳倩, 祁志美

Study of Au-Ag alloy film based infrared surface plasmon resonance sensors

Zhang Zhe, Liu Qian, Qi Zhi-Mei
PDF
导出引用
  • 利用淀积在玻璃衬底上的金银合金薄膜作为表面等离子体共振(SPR)芯片, 构建了Kretschmann结构的近红外波长检测型SPR传感器. 采用不同浓度的葡萄糖水溶液测试了金银合金薄膜SPR传感器的折射率灵敏度. 实验结果表明随着入射角从7.5°增大到 9.5°, SPR吸收峰的半高峰宽从292.8 nm 减小到 131.4 nm, 共振波长从 1215 nm蓝移到 767.7 nm, 折射率灵敏度从35648.3 nm/RIU 减小到 9363.6 nm/RIU.在相同的初始共振波长(λR)下获得的金银合金薄膜SPR折射率灵敏度高于纯金膜(纯金膜在λR=1215 nm下的折射率灵敏度为29793.9 nm/RIU). 利用1 μmol/L的牛血清蛋白(BSA)水溶液测试了传感器对蛋白质吸附的响应.结果表明, BSA分子吸附使得金银合金薄膜SPR吸收峰红移了12.1 nm而纯金膜SPR吸收峰仅红移了9.5 nm. 实验结果还表明, 在相同λR下, 金银合金薄膜SPR吸收峰的半高峰宽大于纯金膜的半高峰宽, 因此其光谱分辨率比纯金膜SPR传感器低.
    Au-Ag alloy films deposited on the glass substrates are used, for the first time, as a wavelength-interrogated near infrared surface plasmon resonance (SPR) sensor. The values of resonance wavelength (λR) of the sensor at different angles of incidence are determined by absorptiometry and its refractive-index (RI) sensitivity is investigated using aqueous glucose solutions as the standard RI samples. As the incident angle increases from 7.5° to 9.5°, the SPR absorption peak shifts from λR = 1215 nm to 767.7 nm, the full width at half magnitude (FWHM) of the peak reduces from 292.8 nm to 131.4 nm, and the RI sensitivity decreases from 35648.3 nm/RIU down to 9363.6 nm/RIU. At the same initial λR, the SPR sensor with the Au-Ag alloy film shows a higher sensitivity than that with the pure Au film (S = 29793.9 nm/RIU at λR=1215 nm with a pure Au film). Adsorption of bovine serum album molecules from the aqueous solution of 1 μmol/L protein results in a redshift of ΔλR = 12.1 nm with the Au-Ag alloy film and ΔλR=9.5 nm with the pure Au film. The experimental data also indicate that the FWHM of the SPR absorption peak with the Au-Ag alloy film is larger than that at the same λR with the pure Au film, leading to a lower spectral resolution than that of the latter.
    • 基金项目: 国家自然科学基金(批准号: 60978042, 61078039) 和国家重点基础研究发展计划(批准号: 2009CB320300)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60978042, 61078039) and the National Basic Research Program of China (Grant No. 2009CB320300).
    [1]

    Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B 54 3

    [2]

    Boussaad S, Pean J, Tao N J 2000 Anal. Chem. 72 222

    [3]

    Qi Z M, Xia S H, Wei M D, Matsuda H, Zhou H S 2007 Appl. Opt. 46 7963

    [4]

    Mazumdar S D, Hartmann M, Kämpfer P, Keusgen M 2007 Biosens. Bioelectron. 22 2040

    [5]

    Shankaran D R, Gobi K V, Miura N 2007 Sens. Actuators B 121 158

    [6]

    Frischeisen J, Mayr C, Reinke N A, Nowy S, Brtting W 2008 Opt. Express 16 18426

    [7]

    Tanaka H, Hanasaki M, Isojima T, Takeuchi H, Shiroya T, Kawaguchi H, Shiroya T, Kawaguchi H 2009 J. Colloid Interface Sci. 70 259

    [8]

    Hodnik V, Anderluh G 2009 Sensors 9 1339

    [9]

    Chen X, Pan M, Jiang K 2010 Microelectron. Eng. 87 790

    [10]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2010 Chin. Phys. Soc. 59 6532

    [11]

    Wu Y H, Hao P, Zhang P 2009 Chin. Phys. Soc. 58 1980

    [12]

    Zhong M L, Li S, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 027803 (in Chinese) [钟明亮, 李山, 熊祖洪, 张中月 2012 61 027803]

    [13]

    Wu Y H, Hao P, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [吴一辉, 郝鹏, 张平2010 59 6532]

    [14]

    Hong X, Du D D, Qiu Z R, Zhang G X 2007 Acta Phys. Sin. 56 7219 (in Chinese) [洪 昕, 杜丹丹, 裘祖荣, 张国雄 2007 56 7219]

    [15]

    Ong B H, Yuan X, Tjin S C 2007 Fiber and Integrated Optics 26 229

    [16]

    Zhai P, Guo J, Xiang J, Zhou F 2007 J. Phys. Chem. C 111 981

    [17]

    Zhu G, Li H, Clavero C, Yang K, Lukaszew R A, Podolskiy V A, Noginov M A 2009 Proceeding of the International Quantum Electronics Conference Baltimore, Maryland, May 31, 2009 pIFC4

    [18]

    Zhu J 2009 Nanoscale Res. Lett. 4 977

    [19]

    Lee K S, EI-Sayed M A 2006 J. Phys. Chem. B 110 19220

    [20]

    Hutter E, Fendler J H, Roy D 2001 J. Phys. Chem. B 105 11159

    [21]

    Zhou L, Yu X F, Fu X F, Hao Z H, Li K Y 2008 Chin. Phys. Lett. 25 1776

    [22]

    Http://www.reichertai.com/files/applications/1039637372.PDF[2012.7.18]

    [23]

    Zhang Z, Qi Z M 2010 Chin. J. Anal. Chem. 38 1538

    [24]

    Palik E D 1998 Handbook of Optical Constants of Solids (Vol.1) (San Diego: Academic)

  • [1]

    Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B 54 3

    [2]

    Boussaad S, Pean J, Tao N J 2000 Anal. Chem. 72 222

    [3]

    Qi Z M, Xia S H, Wei M D, Matsuda H, Zhou H S 2007 Appl. Opt. 46 7963

    [4]

    Mazumdar S D, Hartmann M, Kämpfer P, Keusgen M 2007 Biosens. Bioelectron. 22 2040

    [5]

    Shankaran D R, Gobi K V, Miura N 2007 Sens. Actuators B 121 158

    [6]

    Frischeisen J, Mayr C, Reinke N A, Nowy S, Brtting W 2008 Opt. Express 16 18426

    [7]

    Tanaka H, Hanasaki M, Isojima T, Takeuchi H, Shiroya T, Kawaguchi H, Shiroya T, Kawaguchi H 2009 J. Colloid Interface Sci. 70 259

    [8]

    Hodnik V, Anderluh G 2009 Sensors 9 1339

    [9]

    Chen X, Pan M, Jiang K 2010 Microelectron. Eng. 87 790

    [10]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2010 Chin. Phys. Soc. 59 6532

    [11]

    Wu Y H, Hao P, Zhang P 2009 Chin. Phys. Soc. 58 1980

    [12]

    Zhong M L, Li S, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 027803 (in Chinese) [钟明亮, 李山, 熊祖洪, 张中月 2012 61 027803]

    [13]

    Wu Y H, Hao P, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [吴一辉, 郝鹏, 张平2010 59 6532]

    [14]

    Hong X, Du D D, Qiu Z R, Zhang G X 2007 Acta Phys. Sin. 56 7219 (in Chinese) [洪 昕, 杜丹丹, 裘祖荣, 张国雄 2007 56 7219]

    [15]

    Ong B H, Yuan X, Tjin S C 2007 Fiber and Integrated Optics 26 229

    [16]

    Zhai P, Guo J, Xiang J, Zhou F 2007 J. Phys. Chem. C 111 981

    [17]

    Zhu G, Li H, Clavero C, Yang K, Lukaszew R A, Podolskiy V A, Noginov M A 2009 Proceeding of the International Quantum Electronics Conference Baltimore, Maryland, May 31, 2009 pIFC4

    [18]

    Zhu J 2009 Nanoscale Res. Lett. 4 977

    [19]

    Lee K S, EI-Sayed M A 2006 J. Phys. Chem. B 110 19220

    [20]

    Hutter E, Fendler J H, Roy D 2001 J. Phys. Chem. B 105 11159

    [21]

    Zhou L, Yu X F, Fu X F, Hao Z H, Li K Y 2008 Chin. Phys. Lett. 25 1776

    [22]

    Http://www.reichertai.com/files/applications/1039637372.PDF[2012.7.18]

    [23]

    Zhang Z, Qi Z M 2010 Chin. J. Anal. Chem. 38 1538

    [24]

    Palik E D 1998 Handbook of Optical Constants of Solids (Vol.1) (San Diego: Academic)

  • [1] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真.  , 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [2] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究.  , 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [3] 肖士妍, 贾大功, 聂安然, 余辉, 吉喆, 张红霞, 刘铁根. 开放式多通道多芯少模光纤表面等离子体共振生物传感器.  , 2020, 69(13): 137802. doi: 10.7498/aps.69.20200353
    [4] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器.  , 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [5] 李克武, 王志斌, 陈友华, 杨常青, 张瑞. 基于弹光调制的高灵敏旋光测量.  , 2015, 64(18): 184206. doi: 10.7498/aps.64.184206
    [6] 施伟华, 尤承杰, 吴静. 基于表面等离子体共振和定向耦合的D形光子晶体光纤折射率和温度传感器.  , 2015, 64(22): 224221. doi: 10.7498/aps.64.224221
    [7] 孙小亮, 陈长虹, 孟德佳, 冯士高, 于洪浩. 复合金属光栅模式分离与高性能气体传感器应用.  , 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [8] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究.  , 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [9] 安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军. 碳纳米管/聚二甲基硅氧烷复合薄膜的制备及力敏特性研究.  , 2014, 63(23): 237306. doi: 10.7498/aps.63.237306
    [10] 荆庆丽, 杜春光, 高健存. 表面等离子共振现象的新应用——微弱磁场的测量.  , 2013, 62(3): 037302. doi: 10.7498/aps.62.037302
    [11] 冯李航, 曾捷, 梁大开, 张为公. 契形结构光纤表面等离子体共振传感器研究.  , 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [12] 娄淑琴, 王鑫, 尹国路, 韩博琳. 基于侧漏型光子晶体光纤高灵敏度宽线性范围弯曲传感器的研究.  , 2013, 62(19): 194209. doi: 10.7498/aps.62.194209
    [13] 邹志宇, 刘晓芳, 曾敏, 杨白, 于荣海, 姜鹤, 唐瑞鹤, 吴章奔. 电场辅助溶解法实现玻璃表面金纳米粒子的形貌控制.  , 2012, 61(10): 104208. doi: 10.7498/aps.61.104208
    [14] 闫红丹, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling. 基于表面等离子体耦合的高密度金纳米线阵列.  , 2012, 61(23): 237105. doi: 10.7498/aps.61.237105
    [15] 钟明亮, 李山, 熊祖洪, 张中月. 十字形银纳米结构的表面等离子体光子学性质.  , 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [16] 逯丹凤, 祁志美. 高灵敏度集成光偏振干涉仪特性及生化传感应用研究.  , 2012, 61(11): 114212. doi: 10.7498/aps.61.114212
    [17] 邱东江, 范文志, 翁圣, 吴惠桢, 王俊. 以表面等离子体为媒介的ZnO薄膜发光增强特性研究.  , 2011, 60(8): 087301. doi: 10.7498/aps.60.087301
    [18] 郝鹏, 吴一辉, 张平. 纳米金表面修饰与表面等离子体共振传感器的相互作用研究.  , 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
    [19] 龙拥兵, 张剑, 汪国平. 基于表面等离子体激元共振的飞秒抽运探测技术研究.  , 2009, 58(11): 7722-7726. doi: 10.7498/aps.58.7722
    [20] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻.  , 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
计量
  • 文章访问数:  7593
  • PDF下载量:  1353
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-18
  • 修回日期:  2012-10-26
  • 刊出日期:  2013-03-05

/

返回文章
返回
Baidu
map