搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应力对铁磁薄膜磁滞损耗和矫顽力的影响

郭子政 胡旭波

引用本文:
Citation:

应力对铁磁薄膜磁滞损耗和矫顽力的影响

郭子政, 胡旭波

Effects of stress on the hysteresis loss and coercivity of ferromagnetic film

Guo Zi-Zheng, Hu Xu-Bo
PDF
导出引用
  • 改进了JA-SW混合模型, 使之能处理具有两种单轴各向异性的磁体. 数值研究了面内应力对铁磁薄膜磁滞损耗和矫顽力的影响. 结果表明, 磁滞损耗和矫顽力与应力强度和应力施加方向以及外场取向有关. 磁滞损耗或矫顽力随应力强度变化的关系曲线并不完全是单调增加的, 比如当外场与易轴方向平行时会出现弯曲. 另外, 应力会造成矫顽力随外场取向角关系曲线的峰值偏移. 结果与文献资料进行了广泛对比并对其差异进行了解释.
    The JA-SW hybrid model is extended in order to include the strain or stress anisotropy. With this improved model, a simulation is carried out to study the effects of stress on magnetic hysteresis loss and coercivity of ferromagnetic film. It is shown that the hysteresis loss and coercivity are related to the external field orientation, the stress intensity and the stress direction. Hysteresis loss, or the coercive force does not entirely monotonially increase with the change of stress intensity. For example, when the external field is parallel to the easy axis, a valley appears in the curve. In addition, stress will cause the peak offset of the coercivity curve as the orientation angle of the external field changes. Extensive comparisons of results with literature data are made and the differences between them are explained.
    • 基金项目: 广东省高等学校人才引进专项资金项目和华南农业大学校长科学基金资助的课题.
    • Funds: Project supported by the Guangdong Higher Educational Special Fund for the Introduction of Talents and by the Principal Science Foundation of South China Agricultural University.
    [1]

    Ohnuma M, Yanai T, Hono K, Nakano M, Fukunaga H, Yoshizawa Y, Herzer G 2010 J. Appl. Phys. 108 093927

    [2]

    Zhang H, Zeng D C, Liu Z W 2011 Acta Phys. Sin. 60 067503 (in Chinese) [张辉, 曾德长, 刘仲武 2011 60 067503]

    [3]

    Qian L J, Xu X Y, Hu J G 2009 Chin. Phys. B 18 2589

    [4]

    Rong J H, Yun G H 2007 Acta Phys. Sin. 56 5483 (in Chinese) [荣建红, 云国宏 2007 56 5483]

    [5]

    Pan J, Zhou L, Tao Y C, Hu J G 2007 Acta Phys. Sin. 56 3521 (in Chinese) [潘靖, 周岚, 陶永春, 胡经国 2007 56 3521]

    [6]

    Garcia D, Munoz J L, Castano F J, Prados C, Asenjo A, Garcia J M, Vazquez M 1999 J. Appl. Phys. 85 4809

    [7]

    Mandal K, Vazquez M 2000 IEEE Trans. Magn. 36 2912

    [8]

    Stobiecki T, Wrona J, Czapkiewicz M 2000 J. Magn. Magn. Mater. 215-216 566

    [9]

    Minor M K, Crawford T M, Klemmer T J, Peng Y G, Laughlin D E 2002 J. Appl. Phys. 91 8453

    [10]

    Callegaro L, Puppin E 1997 IEEE Trans. Magn. 33 1007

    [11]

    Jiles D C, Atherton D L 1984 J. Phys. D: Appl. Phys. 17 1265

    [12]

    Garikepati P , Chang T T, Jiles D C 1988 IEEE Trans. Magn. 24 2922

    [13]

    Sablik M J, Kwun H, Burkhardt G L, Jiles D C 1987 J. Appl. Phys. 61 3799

    [14]

    Sablik M J, Jiles D C 1988 J. Appl. Phys. 64 5402

    [15]

    Sablik M J, Jiles D C 1993 IEEE Trans. Magn. 29 2113

    [16]

    Jiles D C 1995 J. Phys. D: Appl. Phys. 28 1537

    [17]

    Jiles D C, Devine M K 1994 J. Appl. Phys. 76 7015

    [18]

    LO C C H, Kinser E, Jiles D C 2003 J. Appl. Phys. 93 6626

    [19]

    Zou P, Yu W, Bain A A 2002 IEEE Trans. Magn.38 3501

    [20]

    Braun A 2006 Physica B 373 346

    [21]

    Zhu B, LO C C H, Lee S J, Jiles D C 2001 J. Appl. Phys. 89 7009

    [22]

    Hu R L, Soh A K, Zheng G P, Ni Yong 2006 J. Magn. Magn. Mater. 301 458

    [23]

    Shu Y C, Lin M P, Wu K C 2004 Mech. Mater 36 975

    [24]

    Kedous-Lebouc A, Vernescu C, Cornut B 2003 J. Magn. Magn. Mater. 254-255 321

    [25]

    Stoner E C, Wohlfarth E P 1948 Philos. Trans. R. Soc. London 240 74

    [26]

    Dimitropoulos P D, Stamoulis G I, Hristoforou E 2006 IEEE Sens. J. 6 721

    [27]

    Guo Z Z 2011 Solid State Commun. 151 116

    [28]

    Braun D 2003 J. Magn. Magn. Mater. 261 295

    [29]

    Yamamoto K, Yanase S 2011 Przegl Elektrotechniczny 87 97

    [30]

    Yamamoto K, Nakano H, Yamashiro Y 2003 J. Magn. Magn. Mater. 254-255 222

    [31]

    Pan J, Tao Y C, Hu J G 2006 Acta Phys. Sin. 55 3032 (in Chinese) [潘靖, 陶永春, 胡经国 2006 55 3032]

    [32]

    Bai Y H, Yun G H, Narisu 2009 Acta Phys. Sin. 58 4962 (in Chinese) [白宇浩, 云国宏, 那日苏 2009 58 4962]

    [33]

    Thang P D, Rijnders G, Blank D H A 2007 J. Magn. Magn. Mater. 310 2621

  • [1]

    Ohnuma M, Yanai T, Hono K, Nakano M, Fukunaga H, Yoshizawa Y, Herzer G 2010 J. Appl. Phys. 108 093927

    [2]

    Zhang H, Zeng D C, Liu Z W 2011 Acta Phys. Sin. 60 067503 (in Chinese) [张辉, 曾德长, 刘仲武 2011 60 067503]

    [3]

    Qian L J, Xu X Y, Hu J G 2009 Chin. Phys. B 18 2589

    [4]

    Rong J H, Yun G H 2007 Acta Phys. Sin. 56 5483 (in Chinese) [荣建红, 云国宏 2007 56 5483]

    [5]

    Pan J, Zhou L, Tao Y C, Hu J G 2007 Acta Phys. Sin. 56 3521 (in Chinese) [潘靖, 周岚, 陶永春, 胡经国 2007 56 3521]

    [6]

    Garcia D, Munoz J L, Castano F J, Prados C, Asenjo A, Garcia J M, Vazquez M 1999 J. Appl. Phys. 85 4809

    [7]

    Mandal K, Vazquez M 2000 IEEE Trans. Magn. 36 2912

    [8]

    Stobiecki T, Wrona J, Czapkiewicz M 2000 J. Magn. Magn. Mater. 215-216 566

    [9]

    Minor M K, Crawford T M, Klemmer T J, Peng Y G, Laughlin D E 2002 J. Appl. Phys. 91 8453

    [10]

    Callegaro L, Puppin E 1997 IEEE Trans. Magn. 33 1007

    [11]

    Jiles D C, Atherton D L 1984 J. Phys. D: Appl. Phys. 17 1265

    [12]

    Garikepati P , Chang T T, Jiles D C 1988 IEEE Trans. Magn. 24 2922

    [13]

    Sablik M J, Kwun H, Burkhardt G L, Jiles D C 1987 J. Appl. Phys. 61 3799

    [14]

    Sablik M J, Jiles D C 1988 J. Appl. Phys. 64 5402

    [15]

    Sablik M J, Jiles D C 1993 IEEE Trans. Magn. 29 2113

    [16]

    Jiles D C 1995 J. Phys. D: Appl. Phys. 28 1537

    [17]

    Jiles D C, Devine M K 1994 J. Appl. Phys. 76 7015

    [18]

    LO C C H, Kinser E, Jiles D C 2003 J. Appl. Phys. 93 6626

    [19]

    Zou P, Yu W, Bain A A 2002 IEEE Trans. Magn.38 3501

    [20]

    Braun A 2006 Physica B 373 346

    [21]

    Zhu B, LO C C H, Lee S J, Jiles D C 2001 J. Appl. Phys. 89 7009

    [22]

    Hu R L, Soh A K, Zheng G P, Ni Yong 2006 J. Magn. Magn. Mater. 301 458

    [23]

    Shu Y C, Lin M P, Wu K C 2004 Mech. Mater 36 975

    [24]

    Kedous-Lebouc A, Vernescu C, Cornut B 2003 J. Magn. Magn. Mater. 254-255 321

    [25]

    Stoner E C, Wohlfarth E P 1948 Philos. Trans. R. Soc. London 240 74

    [26]

    Dimitropoulos P D, Stamoulis G I, Hristoforou E 2006 IEEE Sens. J. 6 721

    [27]

    Guo Z Z 2011 Solid State Commun. 151 116

    [28]

    Braun D 2003 J. Magn. Magn. Mater. 261 295

    [29]

    Yamamoto K, Yanase S 2011 Przegl Elektrotechniczny 87 97

    [30]

    Yamamoto K, Nakano H, Yamashiro Y 2003 J. Magn. Magn. Mater. 254-255 222

    [31]

    Pan J, Tao Y C, Hu J G 2006 Acta Phys. Sin. 55 3032 (in Chinese) [潘靖, 陶永春, 胡经国 2006 55 3032]

    [32]

    Bai Y H, Yun G H, Narisu 2009 Acta Phys. Sin. 58 4962 (in Chinese) [白宇浩, 云国宏, 那日苏 2009 58 4962]

    [33]

    Thang P D, Rijnders G, Blank D H A 2007 J. Magn. Magn. Mater. 310 2621

  • [1] 缪培贤, 王涛, 史彦超, 高存绪, 蔡志伟, 柴国志, 陈大勇, 王建波. 在开磁路中利用抽运-检测型铷原子磁力仪测量软磁材料的矫顽力.  , 2022, 71(24): 244206. doi: 10.7498/aps.71.20221618
    [2] 张浩杰, 张茹菲, 傅立承, 顾轶伦, 智国翔, 董金瓯, 赵雪芹, 宁凡龙. 一种具有“1111”型结构的新型稀磁半导体(La1–xSrx)(Zn1–xMnx)SbO.  , 2021, 70(10): 107501. doi: 10.7498/aps.70.20201966
    [3] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根. 稀土永磁体及复合磁体反磁化过程和矫顽力.  , 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [4] 肖俊儒, 刘仲武, 楼华山, 詹慧雄. 利用Pr70Cu30晶界扩散改善烧结钕铁硼废料矫顽力的研究.  , 2018, 67(6): 067502. doi: 10.7498/aps.67.20172551
    [5] 李细莲, 刘刚, 杜桃园, 赵晶, 吴木生, 欧阳楚英, 徐波. 应力对硅烯上锂吸附的影响.  , 2014, 63(21): 217101. doi: 10.7498/aps.63.217101
    [6] 郭子政, 邓海东, 黄佳声, 熊万杰, 徐初东. 应力调制的自旋转矩临界电流.  , 2014, 63(13): 138501. doi: 10.7498/aps.63.138501
    [7] 侯志鹏, 苏峰, 王文全. 三元Co79Zr18Cr3合金中高矫顽力.  , 2014, 63(8): 087501. doi: 10.7498/aps.63.087501
    [8] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学.  , 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [9] 王程, 王冠宇, 张鹤鸣, 宋建军, 杨晨东, 毛逸飞, 李永茂, 胡辉勇, 宣荣喜. 单轴、双轴应变Si拉曼谱应力模型.  , 2012, 61(4): 047203. doi: 10.7498/aps.61.047203
    [10] 谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华. 高场应力及栅应力下AlGaN/GaN HEMT器件退化研究.  , 2009, 58(1): 511-517. doi: 10.7498/aps.58.511
    [11] 邱学军, 张云鹏, 何正红, 白 浪, 刘国磊, 王 跃, 陈 鹏, 熊祖洪. 矫顽力可调的多孔硅基Fe膜.  , 2006, 55(11): 6101-6107. doi: 10.7498/aps.55.6101
    [12] 关庆丰, 安春香, 秦 颖, 邹建新, 郝胜志, 张庆瑜, 董 闯, 邹广田. 强流脉冲电子束应力诱发的微观结构.  , 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [13] 陈宪锋. R2Fe14B型永磁材料中第二磁晶各向异性常数对反磁化过程的影响.  , 2005, 54(8): 3856-3861. doi: 10.7498/aps.54.3856
    [14] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对矫顽力的影响.  , 2005, 54(9): 4389-4394. doi: 10.7498/aps.54.4389
    [15] 史慧刚, 司明苏, 薛德胜. 段化(A/B)m复合纳米线阵列的矫顽力机理.  , 2005, 54(7): 3402-3407. doi: 10.7498/aps.54.3402
    [16] 陶永梅, 蒋 青, 曹海霞. 用横场伊辛模型研究应力对铁电薄膜的热力学性质的影响.  , 2005, 54(1): 274-279. doi: 10.7498/aps.54.274
    [17] 翁臻臻, 冯 倩, 黄志高, 都有为. 混合磁性薄膜矫顽力及阶梯效应的微磁学及Monte Carlo研究.  , 2004, 53(9): 3177-3185. doi: 10.7498/aps.53.3177
    [18] 高汝伟, 冯维存, 王 标, 陈 伟, 韩广兵, 张 鹏, 刘汉强, 李 卫, 郭永权, 李岫梅. 纳米复合永磁材料的有效各向异性与矫顽力.  , 2003, 52(3): 703-707. doi: 10.7498/aps.52.703
    [19] 张晓渝, 陈亚杰. 磁性颗粒复合体磁渗流区矫顽力异常的研究.  , 2003, 52(8): 2052-2056. doi: 10.7498/aps.52.2052
    [20] 胡立发, 周廉, 张平祥, 王金星. 高温超导体的磁化与磁滞损耗.  , 2001, 50(7): 1359-1365. doi: 10.7498/aps.50.1359
计量
  • 文章访问数:  8882
  • PDF下载量:  1475
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-28
  • 修回日期:  2012-10-14
  • 刊出日期:  2013-03-05

/

返回文章
返回
Baidu
map