-
光子晶体光纤由于其灵活可调的色散特性用作色散补偿具有极大的应用潜力. 设计了一种色散补偿光子晶体光纤, 并运用频域有限差分法模拟了其色散特性,从理论上分析了其结构参数孔间距Λ和空气占空比d/Λ对该光子晶体光纤的色散系数的影响, 并且实际制备出了3种不同结构参数的光子晶体光纤. 通过对其色散曲线对比分析表明: 当光子晶体光纤孔间距在1 μm附近时, 其色散系数随着孔间距Λ和占空比d/Λ的增大而增加, 但对于孔间距Λ的变化比占空比d/Λ更为敏感, 并且随着孔间距Λ的增加,其对色散系数的影响能力逐渐减小. 设计并制备的光子晶体光纤在1550 nm处的色散系数为-241.5 ps·nm-1·km-1, 相对色散斜率为0.0018, 具有较好的色散补偿能力.Photonic crystal fiber has great potential applications such as dispersion compensation due to its adjustable and flexible dispersion characteristics. In this paper, we design a dispersion compensation photonic crystal fiber, simulate the dispersion characteristics by the finite-difference frequency-domain method, and analyse the effects of the structure parameters air hole spacing Λ and air-filling fraction d/Λ on the dispersion of photonic crystal fiber theoretically. And we also fabricate three photonic crystal fibers with different structural parameters. Through the comparison and analysis of their dispersion curves, we have the following conclusions: the dispersion coefficient increases with air hole spacing Λ and air-filling fraction d/Λ increasing when the air hole spacing of photonic crystal fiber is about 1 μm, but the dispersion is more sensitive to the change of air hole spacing Λ than to air-filling fraction d/Λ, and the effect of air hole spacing on the dispersion coefficient decreases with the increase of air hole spacing. One of the photonic crystal fibers realizes the designed structure: its dispersion coefficient is 241.5 ps·nm-1·km-1, relative dispersion slope is 0.0018 at 1550 nm, it has good ability in dispersion compensation.
-
Keywords:
- dispersion /
- dispersion compensation /
- photonic crystal fiber /
- structure parameters
[1] Gruner-Nielsen L, Wandel M, Kristensen P, Jorgensen C, Jorgensen L V, Edvold B, Palsdottir B, Jakobsen D 2005 J. Lightwave Technol. 23 3566
[2] Russell P S J 2006 J. Lightwave Technol. 24 4729
[3] Yang S, Zhang Y J, Peng X Z, Lu Y, Xie S H 2006 Opt. Express 14 3015
[4] Jiang L H, Hou L T 2010 Acta Phys. Sin. 59 1095 (in Chinese) [姜凌红,侯蓝田 2010 59 1095]
[5] Ritari T, Niemi T, Ludvigsen H, Wegmuller M, Gisin N, Folkenberg J R, Petterson A 2003 Opt. Commun. 226 233
[6] Jing Q, Zhang X, Ma H F, Huang Y Q, Ren X M 2012 Opt. Laser Technol. 44 1660
[7] Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135
[8] Saitoh K, Koshiba M, Hasegawa T, Sasaoka E 2003 Opt. Express 11 843
[9] Shen L P, Huang W P, Chen G X, Jian S S 2003 IEEE Photonic. Tech. L 15 540
[10] Wang Z A, Ren X M, Zhang X, Xu Y Z, Huang Y Q 2007 J. Opt. A Pure Appl. Opt. 9 435
[11] Gerome F, Auguste J L, Blondy J M 2004 Opt. Lett. 29 2725
[12] Fujisawa T, Saitoh K, Wada K, Koshiba M 2006 Opt. Express 14 893
[13] Pourmahyabadi M, Nejad S M 2009 Iranian J. Electr. Electron. Eng. 5 170
[14] Li S G, Liu X D, Hou L T 2004 Acta Phys. Sin. 53 1880 (in Chinese) [李曙光, 刘晓东, 侯蓝田 2004 53 1880]
-
[1] Gruner-Nielsen L, Wandel M, Kristensen P, Jorgensen C, Jorgensen L V, Edvold B, Palsdottir B, Jakobsen D 2005 J. Lightwave Technol. 23 3566
[2] Russell P S J 2006 J. Lightwave Technol. 24 4729
[3] Yang S, Zhang Y J, Peng X Z, Lu Y, Xie S H 2006 Opt. Express 14 3015
[4] Jiang L H, Hou L T 2010 Acta Phys. Sin. 59 1095 (in Chinese) [姜凌红,侯蓝田 2010 59 1095]
[5] Ritari T, Niemi T, Ludvigsen H, Wegmuller M, Gisin N, Folkenberg J R, Petterson A 2003 Opt. Commun. 226 233
[6] Jing Q, Zhang X, Ma H F, Huang Y Q, Ren X M 2012 Opt. Laser Technol. 44 1660
[7] Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135
[8] Saitoh K, Koshiba M, Hasegawa T, Sasaoka E 2003 Opt. Express 11 843
[9] Shen L P, Huang W P, Chen G X, Jian S S 2003 IEEE Photonic. Tech. L 15 540
[10] Wang Z A, Ren X M, Zhang X, Xu Y Z, Huang Y Q 2007 J. Opt. A Pure Appl. Opt. 9 435
[11] Gerome F, Auguste J L, Blondy J M 2004 Opt. Lett. 29 2725
[12] Fujisawa T, Saitoh K, Wada K, Koshiba M 2006 Opt. Express 14 893
[13] Pourmahyabadi M, Nejad S M 2009 Iranian J. Electr. Electron. Eng. 5 170
[14] Li S G, Liu X D, Hou L T 2004 Acta Phys. Sin. 53 1880 (in Chinese) [李曙光, 刘晓东, 侯蓝田 2004 53 1880]
计量
- 文章访问数: 7652
- PDF下载量: 762
- 被引次数: 0