搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转环形浅液池内双组分溶液耦合热-溶质毛细对流渐近解

龚振兴 李友荣 彭岚 吴双应 石万元

引用本文:
Citation:

旋转环形浅液池内双组分溶液耦合热-溶质毛细对流渐近解

龚振兴, 李友荣, 彭岚, 吴双应, 石万元

Asymptotic solution of thermal-solutal capillary convection in a slowly rotating shallow annular pool of two components solution

Gong Zhen-Xing, Li You-Rong, Peng Lan, Wu Shuang-Ying, Shi Wan-Yuan
PDF
导出引用
  • 为了了解水平温度梯度作用下旋转环形浅液池内耦合热-溶质毛细对流基本特征, 采用匹配渐近展开法对旋转环形浅液池内耦合热-溶质毛细对流过程进行了求解, 获得了中心区域的速度、温度和浓度分布,分析了旋转、Soret效应、浮力、溶质扩散 系数和液池的几何尺寸对流动结构的影响.将所得到的渐近解和文献中的已有结果进行对比,证明了所求结果的正确性;在浅液池内,耦合热-溶质毛细力对流体流动起主导作用, 旋转和浮力对流动的影响较小,溶质扩散系数和几何尺寸有较明显影响;当各种耦合的 驱动力作用方向相同时,流动增强;否则, 流动减弱.
    In order to understand the characteristics of the coupled thermal and solutal capillary convection with the radial temperature gradient in a slowly rotating shallow annular pool with the free surface, the asymptotic solution is obtained in the core region using asymptotical analysis in the limit as the aspect ratio, which is defined as the ratio of the layer thickness to the gap width, goes to zero. The influences of the rotating, Soret effect, solute diffusion coefficient, buoyant force and geometric parameters on fluid flow are analyzed. The results show that when the rotating and the solutal capillary force and the buoyancy induced by the ununiform distribution of solute concentration are not considered, the asymptotic solution is the same as that of the previous work. The influences of the rotating, the buoyancy, solute diffusion coefficient and the geometric parameters on the fluid flow are all small and the coupled thermal and solutal capillary forces play a dominant role in the convection. When the coupled forces are in the same direction, the flow is reinforced, otherwise, the flow is suppressed.
    • 基金项目: 国家自然科学基金(批准号:51176209)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51176209).
    [1]

    Schwabe D, Scharmann A, Preisser F, Oeder R 1978 J. Cryst. Growth 43 305

    [2]

    Cröll A, Mitric A, Aniol O, Schtt S, Simon P 2009 Cryst. Res. Technol. 44 1101

    [3]

    Wang J S, Yan J J, Hu S H, Liu J P 2009 Int. J. Heat Mass Transfer 52 1533

    [4]

    Bergman T L 1986 Phys. Fluids 29 2103

    [5]

    Bergeon A, Henry D, Benhadid L H, Tuckerman L S 1998 J. Fluid Mech. 375 143

    [6]

    Arafune K, Hirata A 1998 Numerical Heat Transfer A 44 421

    [7]

    Arafune K, Yamamoto K, Hirata A 2001 Int. J. Heat Mass Transfer 44 2405

    [8]

    Chen C F, Chan C L 2010 Int. J. Heat Mass Transfer 53 1563

    [9]

    Li Y S, Chen Z W, Zhan J M 2010 Int. J. Heat Mass Transfer 53 5223

    [10]

    Chen Z W, Li Y S, Zhan J M 2010 Phys. Fluids 22 0341006

    [11]

    Zhan J M, Chen Z W, Li Y S, Nie Y H 2010 Phys. Rev. E 82 066305

    [12]

    Li Y R, Wu C M, Wu S Y, Peng L 2009 Phys. Fluids 21 084102

    [13]

    Shi W Y, Ermakov M K, Imaishi N 2006 J. Cryst. Growth 294 474

    [14]

    Zheng L C, Sheng X Y, Zhang X X 2006 Acta Phys. Sin. 55 5298 (in Chinese) [郑连存, 盛晓艳, 张欣欣 2006 55 5298]

    [15]

    Zheng L C, Feng Z F, Zhang X X 2007 Acta Phys. Sin. 56 1549 (in Chinese) [郑连存, 冯志丰, 张欣欣 2007 56 1549]

    [16]

    Zhang Y, Zheng L C, Zhang X X 2009 Acta Phys. Sin. 58 5506 (in Chinese) [张艳, 郑连存, 张欣欣 2009 58 5506]

    [17]

    Cormack D E, Leal L G 1974 J. Fluid Mech. 65 209

    [18]

    Merker G P, Leal L G 1980 Int. J. Heat Mass Transfer 23 677

    [19]

    Leppinen D M 2002 Int. J. Heat Mass Transfer 45 2967

    [20]

    Li Y R, Zhao X X, Wu S Y, Peng L 2008 Phys. Fluids 20 082107

    [21]

    Li Y R, Ouyang Y Q, Wang S C, Wu S Y 2010 J. Eng. Thermophys. 31 1921 (in Chinese) [李友荣, 欧阳玉清, 王双成, 吴双应 2010 工程热 31 1921]

    [22]

    Li Y R, Wang S C, Wu S Y, Peng L 2010 Microgravity Sci. Technol. 22 193

    [23]

    Sen A K, Davis S H 1982 J. Fluid Mech. 12 163

  • [1]

    Schwabe D, Scharmann A, Preisser F, Oeder R 1978 J. Cryst. Growth 43 305

    [2]

    Cröll A, Mitric A, Aniol O, Schtt S, Simon P 2009 Cryst. Res. Technol. 44 1101

    [3]

    Wang J S, Yan J J, Hu S H, Liu J P 2009 Int. J. Heat Mass Transfer 52 1533

    [4]

    Bergman T L 1986 Phys. Fluids 29 2103

    [5]

    Bergeon A, Henry D, Benhadid L H, Tuckerman L S 1998 J. Fluid Mech. 375 143

    [6]

    Arafune K, Hirata A 1998 Numerical Heat Transfer A 44 421

    [7]

    Arafune K, Yamamoto K, Hirata A 2001 Int. J. Heat Mass Transfer 44 2405

    [8]

    Chen C F, Chan C L 2010 Int. J. Heat Mass Transfer 53 1563

    [9]

    Li Y S, Chen Z W, Zhan J M 2010 Int. J. Heat Mass Transfer 53 5223

    [10]

    Chen Z W, Li Y S, Zhan J M 2010 Phys. Fluids 22 0341006

    [11]

    Zhan J M, Chen Z W, Li Y S, Nie Y H 2010 Phys. Rev. E 82 066305

    [12]

    Li Y R, Wu C M, Wu S Y, Peng L 2009 Phys. Fluids 21 084102

    [13]

    Shi W Y, Ermakov M K, Imaishi N 2006 J. Cryst. Growth 294 474

    [14]

    Zheng L C, Sheng X Y, Zhang X X 2006 Acta Phys. Sin. 55 5298 (in Chinese) [郑连存, 盛晓艳, 张欣欣 2006 55 5298]

    [15]

    Zheng L C, Feng Z F, Zhang X X 2007 Acta Phys. Sin. 56 1549 (in Chinese) [郑连存, 冯志丰, 张欣欣 2007 56 1549]

    [16]

    Zhang Y, Zheng L C, Zhang X X 2009 Acta Phys. Sin. 58 5506 (in Chinese) [张艳, 郑连存, 张欣欣 2009 58 5506]

    [17]

    Cormack D E, Leal L G 1974 J. Fluid Mech. 65 209

    [18]

    Merker G P, Leal L G 1980 Int. J. Heat Mass Transfer 23 677

    [19]

    Leppinen D M 2002 Int. J. Heat Mass Transfer 45 2967

    [20]

    Li Y R, Zhao X X, Wu S Y, Peng L 2008 Phys. Fluids 20 082107

    [21]

    Li Y R, Ouyang Y Q, Wang S C, Wu S Y 2010 J. Eng. Thermophys. 31 1921 (in Chinese) [李友荣, 欧阳玉清, 王双成, 吴双应 2010 工程热 31 1921]

    [22]

    Li Y R, Wang S C, Wu S Y, Peng L 2010 Microgravity Sci. Technol. 22 193

    [23]

    Sen A K, Davis S H 1982 J. Fluid Mech. 12 163

  • [1] 张忠强, 范晋伟, 张福建, 程广贵, 丁建宁. 水流在旋转黑磷纳米管内轴向驱动特性.  , 2020, 69(11): 110201. doi: 10.7498/aps.69.20200116
    [2] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态.  , 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [3] 秦修培, 耿德路, 洪振宇, 魏炳波. 超声悬浮过程中圆柱体的旋转运动机理研究.  , 2017, 66(12): 124301. doi: 10.7498/aps.66.124301
    [4] 杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂. 基于偏振旋转耦合1550 nm垂直腔面发射激光器环形系统产生多路高质量混沌信号.  , 2016, 65(19): 194207. doi: 10.7498/aps.65.194207
    [5] 王飞, 彭岚, 张全壮, 刘佳. 水平温差对环形浅液池内Marangoni-热毛细对流的影响.  , 2015, 64(14): 140202. doi: 10.7498/aps.64.140202
    [6] 陈明文, 陈弈臣, 张文龙, 刘秀敏, 王自东. 各向异性表面张力对定向凝固中深胞晶生长的影响.  , 2014, 63(3): 038101. doi: 10.7498/aps.63.038101
    [7] 许永红, 韩祥临, 石兰芳, 莫嘉琪. 薛定谔扰动耦合系统孤波的行波近似解法.  , 2014, 63(9): 090204. doi: 10.7498/aps.63.090204
    [8] 韩祥临, 林万涛, 许永红, 莫嘉琪. 广义Duffing扰动振子随机共振机理的渐近解.  , 2014, 63(17): 170204. doi: 10.7498/aps.63.170204
    [9] 欧阳成, 林万涛, 程荣军, 莫嘉琪. 一类厄尔尼诺海-气时滞振子的渐近解.  , 2013, 62(6): 060201. doi: 10.7498/aps.62.060201
    [10] 石兰芳, 欧阳成, 陈丽华, 莫嘉琪. 一类大气等离子体反应扩散模型的解法.  , 2012, 61(5): 050203. doi: 10.7498/aps.61.050203
    [11] 武利猛, 倪明康. 奇异摄动最优控制问题中的内部层解.  , 2012, 61(8): 080203. doi: 10.7498/aps.61.080203
    [12] 石兰芳, 欧阳成, 莫嘉琪. 一类海-气耦合振子模型行波解的渐近解法.  , 2012, 61(12): 120201. doi: 10.7498/aps.61.120201
    [13] 石兰芳, 周先春, 莫嘉琪. 扰动Nizhnik-Novikov-Veselov系统分形孤子渐近解.  , 2011, 60(11): 110205. doi: 10.7498/aps.60.110205
    [14] 徐惠, 陈丽华, 莫嘉琪. 一类奇摄动薄板弯曲问题的匹配渐近解.  , 2011, 60(10): 100201. doi: 10.7498/aps.60.100201
    [15] 胡先权, 崔立鹏, 罗光, 马燕. 幂函数叠加势的径向薛定谔方程的解析解.  , 2009, 58(4): 2168-2173. doi: 10.7498/aps.58.2168
    [16] 胡先权, 许 杰, 马 勇, 殷 霖. 高次正幂与逆幂势函数的叠加的径向薛定谔方程的解析解.  , 2007, 56(9): 5060-5065. doi: 10.7498/aps.56.5060
    [17] 吴云岗, 陶明德. 粘性流体中船行波的完整速度场.  , 2005, 54(10): 4496-4500. doi: 10.7498/aps.54.4496
    [18] 吕咸青. KdVB方程行波解的渐近分析.  , 1992, 41(2): 177-181. doi: 10.7498/aps.41.177
    [19] 麦振洪, 毛再先, 阳述林. 旋转圆盘下的流场解及熔硅中溶质有效分凝系数的计算.  , 1991, 40(6): 935-942. doi: 10.7498/aps.40.935
    [20] 张福范. 旋转矩形板之近似解.  , 1953, 9(4): 294-301. doi: 10.7498/aps.9.294
计量
  • 文章访问数:  6823
  • PDF下载量:  646
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-31
  • 修回日期:  2012-09-14
  • 刊出日期:  2013-02-05

/

返回文章
返回
Baidu
map