搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氨化法制备GaN:Tb纳米颗粒的光学性能

潘孝军 安秀云 张海军 张振兴 谢二庆

引用本文:
Citation:

氨化法制备GaN:Tb纳米颗粒的光学性能

潘孝军, 安秀云, 张海军, 张振兴, 谢二庆

Optical properties of GaN:Tb nanoparticles synthesized by simple ammonification method

Pan Xiao-Jun, An Xiu-Yun, Zhang Hai-Jun, Zhang Zhen-Xing, Xie Er-Qing
PDF
导出引用
  • 利用简单的氨还原方法制备了GaN:Tb纳米颗粒. X射线衍射结果显示纳米颗粒为六方结构, 根据Scherrer公式, 计算得到了GaN:Tb纳米颗粒的平均晶粒大小为21.2 nm; 透射电子显微镜结果显示为GaN:Tb纳米颗粒尺寸均匀, 尺寸大小约为20 nm; 除正常的GaN Raman振动模式外, 还观察到了251和414 cm-1 2个额外的Raman散射峰, 前者是表面无序或尺寸限制效应造成的, 而后者则是八面体Ga-N6振动模式; 最后, 测量了GaN:Tb纳米颗粒的室温光致发光谱, 获得了Tb3+离子在可见光区(位于493.9, 551.2, 594.4和630.1 nm)的本征发光.
    GaN:Tb nanoparticles are synthesized by simple ammonification of a mixture of Ga(NO3)3 and Tb(NO3)3. The XRD result shows that the sample predominantly presents hexagonal phase of GaN and its average grain size is 22.1 nm. TEM images show that the sizes of the particles are almost uniform. Besides conventional GaN Raman shifts, two extra peaks at 251 and 414 cm-1 observed in the Raman spectra can be attributed to the phonons activated by surface disorders or finite-size effects and vibration mode of N-rich octahedral Ga-N6 bonds, respectively. From photoluminescence spectra, four characteristic peaks of Tb3+ions are clearly observed: 5D4 →7F6(493.9 nm), 5D4 →7F5(551.2 nm), 5D4 →7F4(594.4 nm), 5D4 →7F3(630.1 nm).
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: lzujbky-2012-34)资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. lzujbky-2012-34).
    [1]

    Nakamura S, Mukai T, Senoh M 1994 Appl. Phys. Lett. 64 1687

    [2]

    Wilson R G, Schwartz R N, Abernathy C R, Peartor S J, Newman N, Rubin M, Fu T, Zavada J M 1994 Appl. Phys. Lett. 65 992

    [3]

    Steckl A J, Birkhahn R 1998 Appl. Phys. Lett. 73 1700

    [4]

    Steckl A J, Zavada J M 1999 MRS Bull. 24 33

    [5]

    Steckl A J, Heinkenfeld J C, Lee D S, Garter M J, Baker C C, Wang Y, Jones R 2002 IEEE J. Sel. Top. Quantum Electron. 8 749

    [6]

    Kim J H, Shepherd N, Davidson M, Holloway P H 2003 Appl. Phys. Lett. 83 641

    [7]

    Kim J H, Davidson M R, Holloway P H 2003 Appl. Phys. Lett. 83 4746

    [8]

    Kim J H, Holloway P H 2004 J. Appl. Phys. 95 4787

    [9]

    Pan X J, Zhang Z X, Jia L, Li H, Xie E Q 2008 J. Alloy. Compd. 458 579

    [10]

    Pan X J, Zhang Z X, Wang T, Li H, Xie E Q 2008 Acta Phys. Sin. 57 3786 (in Chinese) [潘孝军, 张振兴, 王涛, 李晖, 谢二庆 2008 57 3786]

    [11]

    Xie Y, Qian Y T, Wang W Z, Zhang S Y, Zhang Y H 1996 Science 272 1926

    [12]

    Pan G Q, Kordesch M E, Patten P G 2006 Chem. Mater. 18 5392

    [13]

    Jian J K, Chen X L, He M, Wang W J, Zhang X N, Shen F 2003 Chem. Phys. Lett. 368 416

    [14]

    Lan Z H, Liang C H, Hsu C W, Wu C T, Lin H M, Dhara S, Chen K H, Chen L C, Chen C C 2004 Adv. Funct. Mater. 14 233

    [15]

    Seong H K, Kim J Y, Kim J J, Lee S C, Kim S R, Kim U, Park T E, Choi H J 2007 Nano Lett. 7 3366

    [16]

    Cavallini A, Polenta L, Rossi M 2007 Nano Lett. 7 2166

    [17]

    Jacobs B W, Ayres V M, Petkov M P, Halpern J B, He M Q, Baczewski A D, McElroy K, Crimp M A, Zhang J M, Shaw H C 2007 Nano Lett. 7 1435

    [18]

    Wu H Q, Poitras C B, Lipson M, Spencer M G, Hunting J, DiSalvo F J 2006 Appl. Phys. Lett. 88 011921

    [19]

    Podhorodecki A, Nyk M, Misiewicz J, Strek W 2007 J. Lumin. 126 219

    [20]

    Podhorodecki A, Nyk M, Kudrawiec R, Misiewicz J, Strek W 2007 Electrochem. Solid-State Lett. 10 H88

    [21]

    Pan X J, An X Y, Zhang Z X, Zhou J Y, Xie E Q 2012 J. Alloy. Compd. 519 67

    [22]

    Andreev A A 2003 Phys. Solid State 45 419

    [23]

    Liu Q L, Tanaka T, Hu J Q, Xu F F, Sekiguchi T 2003 Appl. Phys. Lett. 83 4939

    [24]

    Jian J K, Chen X L, He M, Wang W J, Zhang X N, Shen F 2003 Chem. Phys. Lett. 368 416

    [25]

    Bae S Y, Seo H W, Park J, Yang H, Kim B 2003 Chem. Phys. Lett. 376 445

    [26]

    Lan Z H, Liang C H, Hsu C W, Wu C T, Lin H M, Dhara S, Chen K H, Chen L C, Chen C C 2004 Adv. Funct. Mater. 14 233

    [27]

    Scherrer P 1918 Göttinger Nachrichten Gesell. 2 98

    [28]

    Orton J W, Foxon C T 1998 Rep. Prog. Phys. 61 1

    [29]

    Asghar M, Hussain I, Saleemi F, Bustarret E, Cibert J, Kuroda S, Marcet S, Mariette H, Bhatti A S 2006 Mater. Sci. Eng. B 133 102

    [30]

    Chen C C, Yeh C C, Chen C H, Yu M. Y, Liu H L, Wu J J, Chen K H, Chen L C, Peng J Y, Chen Y F 2001 J. Am. Chem. Soc. 123 2791

    [31]

    Liu H L, Chen C C, Chia C T, Yeh C C, Chen C H, Yu M Y, Keller S, DenBaars S P 2001 Chem. Phys. Lett. 345 245

    [32]

    Gebicki W, Strzeszewski J, Kamler G, Szyszko T, Podsiadlo S 2000 Appl. Phys. Lett. 76 3870

    [33]

    Siegle H, Kaczmarczyk G, Filippidis L, Litvinchuk A P, Hoffmann A, Thomsen C 1997 Phys. Rev. B 55 7000

    [34]

    Limmer W, Ritter W, Sauer R, Mensching B, Liu C, Rauschenbach B 1998 Appl. Phys. Lett. 72 2589

    [35]

    Marco de Lucas M C, Fabreguette F, Linsavanh M, Imhoff L, Heintz O, Josse-Courty C, Mesnier M T, Potin V, Bourgeois S, Sacilotti M 2004 J. Cryst. Growth 261 324

    [36]

    Li H D, Zhang S L, Yang H B, Zou G T, Yang Y Y, Yue K T, Wu X H, Yan Y 2002 J. Appl. Phys. 91 4562

    [37]

    Ning J Q, Xu S J, Yu D P, Shan Y Y, Lee S T 2007 Appl. Phys. Lett. 91 103117

  • [1]

    Nakamura S, Mukai T, Senoh M 1994 Appl. Phys. Lett. 64 1687

    [2]

    Wilson R G, Schwartz R N, Abernathy C R, Peartor S J, Newman N, Rubin M, Fu T, Zavada J M 1994 Appl. Phys. Lett. 65 992

    [3]

    Steckl A J, Birkhahn R 1998 Appl. Phys. Lett. 73 1700

    [4]

    Steckl A J, Zavada J M 1999 MRS Bull. 24 33

    [5]

    Steckl A J, Heinkenfeld J C, Lee D S, Garter M J, Baker C C, Wang Y, Jones R 2002 IEEE J. Sel. Top. Quantum Electron. 8 749

    [6]

    Kim J H, Shepherd N, Davidson M, Holloway P H 2003 Appl. Phys. Lett. 83 641

    [7]

    Kim J H, Davidson M R, Holloway P H 2003 Appl. Phys. Lett. 83 4746

    [8]

    Kim J H, Holloway P H 2004 J. Appl. Phys. 95 4787

    [9]

    Pan X J, Zhang Z X, Jia L, Li H, Xie E Q 2008 J. Alloy. Compd. 458 579

    [10]

    Pan X J, Zhang Z X, Wang T, Li H, Xie E Q 2008 Acta Phys. Sin. 57 3786 (in Chinese) [潘孝军, 张振兴, 王涛, 李晖, 谢二庆 2008 57 3786]

    [11]

    Xie Y, Qian Y T, Wang W Z, Zhang S Y, Zhang Y H 1996 Science 272 1926

    [12]

    Pan G Q, Kordesch M E, Patten P G 2006 Chem. Mater. 18 5392

    [13]

    Jian J K, Chen X L, He M, Wang W J, Zhang X N, Shen F 2003 Chem. Phys. Lett. 368 416

    [14]

    Lan Z H, Liang C H, Hsu C W, Wu C T, Lin H M, Dhara S, Chen K H, Chen L C, Chen C C 2004 Adv. Funct. Mater. 14 233

    [15]

    Seong H K, Kim J Y, Kim J J, Lee S C, Kim S R, Kim U, Park T E, Choi H J 2007 Nano Lett. 7 3366

    [16]

    Cavallini A, Polenta L, Rossi M 2007 Nano Lett. 7 2166

    [17]

    Jacobs B W, Ayres V M, Petkov M P, Halpern J B, He M Q, Baczewski A D, McElroy K, Crimp M A, Zhang J M, Shaw H C 2007 Nano Lett. 7 1435

    [18]

    Wu H Q, Poitras C B, Lipson M, Spencer M G, Hunting J, DiSalvo F J 2006 Appl. Phys. Lett. 88 011921

    [19]

    Podhorodecki A, Nyk M, Misiewicz J, Strek W 2007 J. Lumin. 126 219

    [20]

    Podhorodecki A, Nyk M, Kudrawiec R, Misiewicz J, Strek W 2007 Electrochem. Solid-State Lett. 10 H88

    [21]

    Pan X J, An X Y, Zhang Z X, Zhou J Y, Xie E Q 2012 J. Alloy. Compd. 519 67

    [22]

    Andreev A A 2003 Phys. Solid State 45 419

    [23]

    Liu Q L, Tanaka T, Hu J Q, Xu F F, Sekiguchi T 2003 Appl. Phys. Lett. 83 4939

    [24]

    Jian J K, Chen X L, He M, Wang W J, Zhang X N, Shen F 2003 Chem. Phys. Lett. 368 416

    [25]

    Bae S Y, Seo H W, Park J, Yang H, Kim B 2003 Chem. Phys. Lett. 376 445

    [26]

    Lan Z H, Liang C H, Hsu C W, Wu C T, Lin H M, Dhara S, Chen K H, Chen L C, Chen C C 2004 Adv. Funct. Mater. 14 233

    [27]

    Scherrer P 1918 Göttinger Nachrichten Gesell. 2 98

    [28]

    Orton J W, Foxon C T 1998 Rep. Prog. Phys. 61 1

    [29]

    Asghar M, Hussain I, Saleemi F, Bustarret E, Cibert J, Kuroda S, Marcet S, Mariette H, Bhatti A S 2006 Mater. Sci. Eng. B 133 102

    [30]

    Chen C C, Yeh C C, Chen C H, Yu M. Y, Liu H L, Wu J J, Chen K H, Chen L C, Peng J Y, Chen Y F 2001 J. Am. Chem. Soc. 123 2791

    [31]

    Liu H L, Chen C C, Chia C T, Yeh C C, Chen C H, Yu M Y, Keller S, DenBaars S P 2001 Chem. Phys. Lett. 345 245

    [32]

    Gebicki W, Strzeszewski J, Kamler G, Szyszko T, Podsiadlo S 2000 Appl. Phys. Lett. 76 3870

    [33]

    Siegle H, Kaczmarczyk G, Filippidis L, Litvinchuk A P, Hoffmann A, Thomsen C 1997 Phys. Rev. B 55 7000

    [34]

    Limmer W, Ritter W, Sauer R, Mensching B, Liu C, Rauschenbach B 1998 Appl. Phys. Lett. 72 2589

    [35]

    Marco de Lucas M C, Fabreguette F, Linsavanh M, Imhoff L, Heintz O, Josse-Courty C, Mesnier M T, Potin V, Bourgeois S, Sacilotti M 2004 J. Cryst. Growth 261 324

    [36]

    Li H D, Zhang S L, Yang H B, Zou G T, Yang Y Y, Yue K T, Wu X H, Yan Y 2002 J. Appl. Phys. 91 4562

    [37]

    Ning J Q, Xu S J, Yu D P, Shan Y Y, Lee S T 2007 Appl. Phys. Lett. 91 103117

  • [1] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性.  , 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [2] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究.  , 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [3] 陈桢妮, 刘胜利, 王海云, 程杰. Gd掺杂对无氟金属有机物沉积法制备Y1-xGdxBCO薄膜的应力调控.  , 2017, 66(15): 156101. doi: 10.7498/aps.66.156101
    [4] 范志东, 周子淳, 刘绰, 马蕾, 彭英才. Eu掺杂Si纳米线的光致发光特性.  , 2015, 64(14): 148103. doi: 10.7498/aps.64.148103
    [5] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性.  , 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [6] 程赛, 吕惠民, 石振海, 崔静雅. 碳泡沫衬底上氮化铝纳米线的生长及其光致发光特性研究.  , 2012, 61(12): 126201. doi: 10.7498/aps.61.126201
    [7] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能.  , 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [8] 郑立仁, 黄柏标, 尉吉勇. 不同气氛下SiOx纳米线的制备及形貌、红外、光致发光研究.  , 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
    [9] 李会峰, 高祥熙, 黄运华, 王建, 张跃, 赵婧. 掺铟氧化锌纳米阵列的制备、结构及性质研究.  , 2009, 58(4): 2702-2706. doi: 10.7498/aps.58.2702
    [10] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光.  , 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [11] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响.  , 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [12] 唐 斌, 邓 宏, 税正伟, 韦 敏, 陈金菊, 郝 昕. 掺AlZnO纳米线阵列的光致发光特性研究.  , 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [13] 王防震, 陈张海, 柏利慧, 黄少华, 沈学础. CdSe/ZnSe异质结构中Zn1-xCdxSe量子岛(点)的显微荧光光谱和显微拉曼光谱研究.  , 2006, 55(5): 2628-2632. doi: 10.7498/aps.55.2628
    [14] 王英龙, 卢丽芳, 闫常瑜, 褚立志, 周 阳, 傅广生, 彭英才. 具有窄光致发光谱的纳米Si晶薄膜的激光烧蚀制备.  , 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [15] 徐大印, 刘彦平, 何志巍, 方泽波, 刘雪芹, 王印月. 多孔硅衬底上溅射沉积SiC:Tb薄膜的光致发光行为.  , 2004, 53(8): 2694-2698. doi: 10.7498/aps.53.2694
    [16] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响.  , 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [17] 宋淑芳, 周生强, 陈维德, 朱建军, 陈长勇, 许振嘉. 掺铒GaN薄膜的背散射/沟道分析和光致发光研究.  , 2003, 52(10): 2558-2562. doi: 10.7498/aps.52.2558
    [18] 张喜田, 肖芝燕, 张伟力, 高 红, 王玉玺, 刘益春, 张吉英, 许 武. 高质量纳米ZnO薄膜的光致发光特性研究.  , 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
    [19] 梁二军, 晁明举. 激光诱导多孔硅晶格畸变的Raman光谱和光致发光谱研究.  , 2001, 50(11): 2241-2246. doi: 10.7498/aps.50.2241
    [20] 马书懿, 秦国刚, 尤力平, 王印月. 含纳米硅和纳米锗的氧化硅薄膜光致发光的比较研究.  , 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
计量
  • 文章访问数:  6273
  • PDF下载量:  456
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-13
  • 修回日期:  2012-08-29
  • 刊出日期:  2013-02-05

/

返回文章
返回
Baidu
map