搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等轴晶在过热溶液落管中的下落熔化特性研究

周鹏 王猛 林鑫 陈磊 邱丰 黄卫东

引用本文:
Citation:

等轴晶在过热溶液落管中的下落熔化特性研究

周鹏, 王猛, 林鑫, 陈磊, 邱丰, 黄卫东

Experimental study of the settling and melting characteristics of equiaxed crystals in a falling tube

Zhou Peng, Wang Meng, Lin Xin, Chen Lei, Qiu Feng, Huang Wei-Dong
PDF
导出引用
  • 研究了NH4Cl等轴晶在过热NH4Cl-70 wt%H2O溶液落管内熔化中的形貌演化过程, 并分析了溶液过热度及等轴晶初始尺寸对其下落速度和熔化速率的影响规律和机理. 结果表明: 等轴晶在过热溶液中下落时, 若不发生旋转, 其形貌由准轴对称形貌演变成非轴对称准三角形貌;若发生旋转, 则有助于保持其准轴对称形貌. 通过分析不同条件下等轴晶下落时的阻力系数, 认为提高溶液过热度可获得更为光顺的等轴晶外形, 增大其下落速度. 等轴晶初始尺寸越大, 其形貌复杂性提升及下落速度增大, 会导致熔化速率加快. 在等轴晶下落熔化的过程中, 逐渐减小的下落速度减弱了界面前沿对流传质条件, 使得单个等轴晶的熔化速率基本保持恒定.
    The morphology evolution of NH4Cl equiaxed crystal settling in a falling tube filling with its superheated aqueous solution is studied. The effects of superheating and initial crystal size on settling rate and melting velocity are analyzed. The results show that for a non-spinning equiaxed crystal, it will transform from a "quasi-symmetrical" morphology to "quasi-delta" morphology, and for a spinning equiaxed crystal, it is more likely to sustain its initial "quasi-symmetrical" morphology. By analyzing the drag coefficients of equiaxed crystals settling in the solution at different superheating degrees, it is found that higher superheating leads to a smoother shape of the equiaxed crystal, thus increasing its settling rate. For a large equiaxed crystal, higher complexity in shape and increase in settling velocity will lead to a higher melting velocity. In the settling process of crystal in superheated melt, the solute transport condition on the melting interface is weakened by the gradually reducing the settling velocity, resulting in a relatively steady melting velocity for a certain equiaxed crystal.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB610402)、国家自然科学基金(批准号: 50901061, 50971102) 和凝固技术国家重点实验室 (西北工业大学) 自主经费(批准号: 02-TZ-2008, 36-TP-2009)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB10402), the National Natural Science Foundation of China (Grant Nos. 50901061, 50971102) and the Foundation of State Key Laboratory of Solidification Processing, China (Grant Nos. 02-TZ-2008, 36-TP-2009).
    [1]

    Zhang G Y, Zhang H, Liu C M, Zhou Y J 2005 Acta Phys. Sin. 54 1771 (in Chinese) [张国英, 张辉, 刘春明, 周永军 2005 54 1771]

    [2]

    Yeh J W, Jong S H, Liu W P 1996 Metall. Mater. Trans. A 27 1933

    [3]

    Biloni H, Chalmers B 1968 J. Mater. Sci. 3 139

    [4]

    Murakami K, Okamoto T 1984 Mater. Sci. Technol. 18 103

    [5]

    Fleming M C 1974 Metall. Mater. Trans. B 5 2121

    [6]

    Ohno A (Translated by Xing J D) 1990 Solidification of Metals: Theory, Practice and Application (Beijing: China Machine Press) pp30-33 (in Chinese) [大野笃美著, 邢建东译 1990 金属的凝固理论、实践及应用 (北京: 机械工业出版社) 第30–33页]

    [7]

    Hu H Q 1999 The Principle of Solidification in Metals (Beijing: China Machine Press) p206 (in Chinese) [胡汉起 1999 金属凝固原理 (北京: 机械工业出版社) 第206页]

    [8]

    Andrew D, Thomas N 2007 J. Cryst. Growth 300 467

    [9]

    Blackmore K A, Beatty K M, Hui M J 1997 J. Cryst. Growth 174 76

    [10]

    Ramani A, Beckermann C 1997 Scripta Mater. 36 633

    [11]

    Hisao E, Yuhko I, Kei S, Manabu T 1995 ISIJ Int. 46 864

    [12]

    Tan F L 2005 Appl. Therm. Eng. 25 2169

    [13]

    Hansen G, Liu S, Lu S Z, Hellawell A 2002 J. Cryst. Growth 234 731

    [14]

    Shi Y F, Xu Q Y , Liu B C 2011 Acta Phys. Sin. 60 126101 (in Chinese) [石玉峰, 徐庆彦, 柳百成 2011 60 126101 ]

    [15]

    Loth E 2008 Powder Technol. 182 342

    [16]

    Mirihanage W U, Browne D J 2010 Comput. Mater. Sci. 50 260

    [17]

    Cheng N S 2009 Powder Technol. 189 395

    [18]

    Hölzer A, Sommerfeld M 2008 Powder Technol. 184 361

    [19]

    Zhang Q Y, Peng Z, He R, Liu R, Lu Q, Hou M Y 2007 Acta Phys. Sin. 56 4708 (in Chinese) [张权义, 彭政, 何润, 刘锐, 陆坤全, 厚美瑛 2007 56 4708]

    [20]

    Chhabra R P 1995 Powder Technol. 85 83

    [21]

    Beckermann C, de Groh III H C, Weidman P D, Zakhem R, Ahuja S 1993 Metall. Mater. Trans. B 24 749

    [22]

    Zhang Z X, Dong C N 1998 Viscous Fluid Flow ( Beijing: Tsinghua University Press) pp5-8 (in Chinese) [章梓雄, 董曾南 1998 黏性流体力学 (北京: 清华大学出版社) 第5–8页]

    [23]

    Badillo A, Ceynar D, Beckermann C 2007 J. Cryst. Growth 309 197

    [24]

    Beckermann C, Wang C Y 1996 Metall. Mater. Trans. A 27 2784

    [25]

    Simões S, Sousa A, Figueiredo M 1996 Int. J. Pharm. 127 283

    [26]

    Badillo A, Ceynar D, Beckermann C 2007 J. Cryst. Growth 309 197

  • [1]

    Zhang G Y, Zhang H, Liu C M, Zhou Y J 2005 Acta Phys. Sin. 54 1771 (in Chinese) [张国英, 张辉, 刘春明, 周永军 2005 54 1771]

    [2]

    Yeh J W, Jong S H, Liu W P 1996 Metall. Mater. Trans. A 27 1933

    [3]

    Biloni H, Chalmers B 1968 J. Mater. Sci. 3 139

    [4]

    Murakami K, Okamoto T 1984 Mater. Sci. Technol. 18 103

    [5]

    Fleming M C 1974 Metall. Mater. Trans. B 5 2121

    [6]

    Ohno A (Translated by Xing J D) 1990 Solidification of Metals: Theory, Practice and Application (Beijing: China Machine Press) pp30-33 (in Chinese) [大野笃美著, 邢建东译 1990 金属的凝固理论、实践及应用 (北京: 机械工业出版社) 第30–33页]

    [7]

    Hu H Q 1999 The Principle of Solidification in Metals (Beijing: China Machine Press) p206 (in Chinese) [胡汉起 1999 金属凝固原理 (北京: 机械工业出版社) 第206页]

    [8]

    Andrew D, Thomas N 2007 J. Cryst. Growth 300 467

    [9]

    Blackmore K A, Beatty K M, Hui M J 1997 J. Cryst. Growth 174 76

    [10]

    Ramani A, Beckermann C 1997 Scripta Mater. 36 633

    [11]

    Hisao E, Yuhko I, Kei S, Manabu T 1995 ISIJ Int. 46 864

    [12]

    Tan F L 2005 Appl. Therm. Eng. 25 2169

    [13]

    Hansen G, Liu S, Lu S Z, Hellawell A 2002 J. Cryst. Growth 234 731

    [14]

    Shi Y F, Xu Q Y , Liu B C 2011 Acta Phys. Sin. 60 126101 (in Chinese) [石玉峰, 徐庆彦, 柳百成 2011 60 126101 ]

    [15]

    Loth E 2008 Powder Technol. 182 342

    [16]

    Mirihanage W U, Browne D J 2010 Comput. Mater. Sci. 50 260

    [17]

    Cheng N S 2009 Powder Technol. 189 395

    [18]

    Hölzer A, Sommerfeld M 2008 Powder Technol. 184 361

    [19]

    Zhang Q Y, Peng Z, He R, Liu R, Lu Q, Hou M Y 2007 Acta Phys. Sin. 56 4708 (in Chinese) [张权义, 彭政, 何润, 刘锐, 陆坤全, 厚美瑛 2007 56 4708]

    [20]

    Chhabra R P 1995 Powder Technol. 85 83

    [21]

    Beckermann C, de Groh III H C, Weidman P D, Zakhem R, Ahuja S 1993 Metall. Mater. Trans. B 24 749

    [22]

    Zhang Z X, Dong C N 1998 Viscous Fluid Flow ( Beijing: Tsinghua University Press) pp5-8 (in Chinese) [章梓雄, 董曾南 1998 黏性流体力学 (北京: 清华大学出版社) 第5–8页]

    [23]

    Badillo A, Ceynar D, Beckermann C 2007 J. Cryst. Growth 309 197

    [24]

    Beckermann C, Wang C Y 1996 Metall. Mater. Trans. A 27 2784

    [25]

    Simões S, Sousa A, Figueiredo M 1996 Int. J. Pharm. 127 283

    [26]

    Badillo A, Ceynar D, Beckermann C 2007 J. Cryst. Growth 309 197

  • [1] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响.  , 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [2] 李志宏, 丁召, 汤佳伟, 王一, 罗子江, 马明明, 黄延彬, 张振东, 郭祥. Ga液滴沉积速率对GaAs/GaAs (001)量子双环形貌的影响.  , 2019, 68(18): 183601. doi: 10.7498/aps.68.20190615
    [3] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性.  , 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [4] 郭灿, 王锦程, 王志军, 李俊杰, 郭耀麟, 唐赛. BCC枝晶生长原子堆垛过程的晶体相场研究.  , 2015, 64(2): 028102. doi: 10.7498/aps.64.028102
    [5] 韩日宏, 董文超, 陆善平, 李殿中, 李依依. 宏微观耦合模拟熔池不同区域中枝晶竞争生长过程.  , 2014, 63(22): 228103. doi: 10.7498/aps.63.228103
    [6] 王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东. 晶体取向对定向凝固枝晶生长的影响.  , 2013, 62(10): 108103. doi: 10.7498/aps.62.108103
    [7] 白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东. 抽拉速度对SCN-DC共晶生长形貌的影响.  , 2013, 62(21): 218103. doi: 10.7498/aps.62.218103
    [8] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型.  , 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [9] 吴伟, 孙东科, 戴挺, 朱鸣芳. 枝晶生长和气泡形成的数值模拟.  , 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
    [10] 汪志刚, 黄娆, 文玉华. Au-Pd共晶纳米粒子熔化行为的分子动力学研究.  , 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [11] 杨建会, 范强, 张建平. 类氖等电子系列离子基态的双电子复合速率系数研究.  , 2012, 61(19): 193101. doi: 10.7498/aps.61.193101
    [12] 石玉峰, 许庆彦, 柳百成. 对流作用下枝晶形貌演化的数值模拟和实验研究.  , 2011, 60(12): 126101. doi: 10.7498/aps.60.126101
    [13] 文玉华, 孙世刚, 张杨, 朱梓忠. 铂纳米晶在升温过程中结构演化与熔化特征的原子级模拟研究.  , 2009, 58(4): 2585-2589. doi: 10.7498/aps.58.2585
    [14] 潘诗琰, 朱鸣芳. 三维溶质枝晶生长数值模拟.  , 2009, 58(13): 278-S284. doi: 10.7498/aps.58.278
    [15] 陈玉娟, 陈长乐. 相场法模拟对流速度对上游枝晶生长的影响.  , 2008, 57(7): 4585-4589. doi: 10.7498/aps.57.4585
    [16] 王狂飞, 李邦盛, 任明星, 米国发, 郭景杰, 傅恒志. Ti-44at%Al合金小尺寸铸件柱状晶/等轴晶演化过程模拟.  , 2007, 56(6): 3337-3343. doi: 10.7498/aps.56.3337
    [17] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 大块非晶临界冷却速率的非等温转变计算模型.  , 2006, 55(4): 1953-1958. doi: 10.7498/aps.55.1953
    [18] 李 强, 李殿中, 钱百年. 元胞自动机方法模拟枝晶生长.  , 2004, 53(10): 3477-3481. doi: 10.7498/aps.53.3477
    [19] 黄秀清, 刘有延, 邹南之, 马鹏辉. 二维准晶的声子及其熔化性质.  , 1993, 42(7): 1086-1094. doi: 10.7498/aps.42.1086
    [20] 黄秀清;刘有延;邹南之;马鹏辉. 二维准晶的声子及其熔化性质.  , 1991, 40(7): 1086-1094. doi: 10.7498/aps.40.1086
计量
  • 文章访问数:  5948
  • PDF下载量:  497
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-01
  • 修回日期:  2012-08-17
  • 刊出日期:  2013-01-05

/

返回文章
返回
Baidu
map