-
高效的磁电加热不仅能够提高电子回旋共振(ECR)等离子体的离子温度, 还能改善离子的径向和轴向分布, 促进ECR等离子体在化学气相沉积金刚石膜刻蚀中的应用. 将磁电加热系统中的圆环电极改进为圆筒电极, 研究了圆筒电极对离子磁电加热的影响, 对比了圆筒和圆环电极加热离子的区别. 结果表明: 在同一阳极偏压下, 圆筒比圆环电极更有利于提高离子温度, 圆筒电极加热时各径向位置的离子温度升高的幅度较大, 其中圆筒电极内部的离子温度径向分布差异较大, 而圆筒下游的离子温度径向分布比较均匀; 磁电加热对离子密度的影响很小; 采用圆筒电极加热时, 有利于离子向轴向下游的输运, 改善了离子的轴向均匀性.A highly-efficient magnetoelectric heating not only improves ion temperature of electron cyclotron resonance (ECR) plasma, but also reforms the radial and axial distribution of ions, thereby promoting the application of ECR plasma to the etching of chemical vapor deposition diamond films. In this paper, a ring-electrode is replaced by a cylinder-electrode, and the effects of cylinder-electrode on the ion temperature and density are studied. The ion heating effects in the cases of cylinder-electrode and ring-electrode are compared. The results indicate that cylinder-electrode can produce higher ion temperature than ring-electrode at the same anode voltage. Ion temperature at each radial point changes a lot when the cylinder-electrode is used to heat ions. The ion temperature inside cylinder-electrode has a big radial variation while it has a good radial uniformity at downstream of cylinder-electrode. The effect of magnetoelectric heating on ion density is small. Using cylinder-electrode to heat ion is beneficial to the transport and axial uniformity of ions.
-
Keywords:
- ECR plasma /
- magnetoelectric heating /
- ion temperature
[1] Tan B S, Ma Z B, Shen W L, Wu Z H 2010 High Power Laser and Particle Beams 22 1887 (in Chinese) [谭必松, 马志斌, 沈武林, 吴振辉 2010 强激光与粒子束 22 1887]
[2] Shuji K, Yukie Y, Katsumi M 1999 Nanotechnology 10 385
[3] Buchkremer-Hermanns H, Long C, Weiss H 1996 Diamond and Related Materials 5 845
[4] Roth J R, Gerdin G A, Richardson R W 1976 IEEE Trans. Plasma Sci. PS-4 166
[5] Roth J R 1973 Plasma Phys. 15 995
[6] Roth J R 1973 IEEE Trans. Plasma Sci. 1 34
[7] Shen W L, Ma Z B, Tan B S, Wu J, Wang J H 2011 Acta Phys. Sin. 60 105204 (in Chinese) [沈武林, 马志斌, 谭必松, 吴俊, 汪健华 2011 60 105204]
[8] Tan B S, Ma Z B, Shen W L 2011 Plasma Sci. Technol. 13 68
[9] Ezumi N, Masuzaki S, Ohno N 2003 J. Nucl. Mater. 313-316 696
[10] Sekine T, Saito T, Tatematsu Y 2004 Rev. Sci. Instrum. 75 4317
-
[1] Tan B S, Ma Z B, Shen W L, Wu Z H 2010 High Power Laser and Particle Beams 22 1887 (in Chinese) [谭必松, 马志斌, 沈武林, 吴振辉 2010 强激光与粒子束 22 1887]
[2] Shuji K, Yukie Y, Katsumi M 1999 Nanotechnology 10 385
[3] Buchkremer-Hermanns H, Long C, Weiss H 1996 Diamond and Related Materials 5 845
[4] Roth J R, Gerdin G A, Richardson R W 1976 IEEE Trans. Plasma Sci. PS-4 166
[5] Roth J R 1973 Plasma Phys. 15 995
[6] Roth J R 1973 IEEE Trans. Plasma Sci. 1 34
[7] Shen W L, Ma Z B, Tan B S, Wu J, Wang J H 2011 Acta Phys. Sin. 60 105204 (in Chinese) [沈武林, 马志斌, 谭必松, 吴俊, 汪健华 2011 60 105204]
[8] Tan B S, Ma Z B, Shen W L 2011 Plasma Sci. Technol. 13 68
[9] Ezumi N, Masuzaki S, Ohno N 2003 J. Nucl. Mater. 313-316 696
[10] Sekine T, Saito T, Tatematsu Y 2004 Rev. Sci. Instrum. 75 4317
计量
- 文章访问数: 6559
- PDF下载量: 368
- 被引次数: 0