搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ECR等离子体的磁电加热研究

沈武林 马志斌 谭必松 吴俊 汪建华

引用本文:
Citation:

ECR等离子体的磁电加热研究

沈武林, 马志斌, 谭必松, 吴俊, 汪建华

Magnetoelectric heating in the ECR plasma

Shen Wu-Lin, Ma Zhi-Bin, Tan Bi-Song, Wu Jun, Wang Jian-Hua
PDF
导出引用
  • 在ECR等离子体装置上进行了磁电加热研究,利用离子灵敏探针(ISP)测量了磁电加热前后离子温度的变化,研究了电极环偏压、磁场强度、气压等参数对磁电加热过程以及加热效率的影响.结果表明:等离子体的整体加热是通过离子在电极环鞘层中的磁电加热及被加热的离子沿径向的输运来完成的.轴心处离子温度随电极环偏压的升高呈非线性增加.磁电加热效率随偏压的增大而增大,在电极环偏压为1000 V时,磁电加热效率为2%2.5%,ECR等离子体中的离子温度能够提高20 eV以上.磁场强度在磁电加热过程中对离子的限制和加热起到重要作用,当磁场强度在6.310-28.710-2T之间变化时,磁电加热的效率随磁场强度的增大而增大.气压在0.020.8 Pa范围内,磁电加热的效率随气压的减小而增大.
    The magnetoelectric heating is investigated on an ECR plasma device. The ion temperatures are measured by ion sensitive probe (ISP) before and after magnetoelectric heating. The influences of bias voltage of electrical ring, magnet field and pressure on ion temperature and the efficiency of ion heating are studied. The results indicate that the whole heating of the plasma is accomplished through the magnetoelectric heating of the ions in the sheath of the electric ring and the radial transport of the heated ions. The ion temperature in the axial area increases with the bias voltage of electric ring, and their relationship is nonlinear. The ion temperature increases more than 20 eV when the bias voltage is 1000 V. A heating efficiency is achieved to be as high as 2%2.5% and increases with the bias voltage increasing. The magnetic field strength plays an important role in the limitation and heating of the ions. The efficiency of the magnetoelectric heating increases with the increase of the magnetic field strength when the magnetic field strength changes from 6.310-2T to 8.710-2T. The efficiency of the magnetoelectric heating increases with the pressure decreasing when the pressure chenges in a range of 0.020.8Pa.
    • 基金项目: 国家自然科学基金(批准号:10875093)资助的课题.
    [1]

    Sun J,Wu J D, Zhong X X, Lai B 2000 Chinese Journal of Semiconductors 21 1019 (in Chinese) [孙 剑、吴嘉达、钟晓霞、来 冰 2000 半导体学报 21 1019]

    [2]

    Ning Z Y, Cheng S H 1999 Acta Phys. Sin. 48 1950 (in Chinese) [宁兆元、程珊华 1999 48 1950]

    [3]
    [4]
    [5]

    Wang J H, Yuan R Z, Wu Q C 1999 Acta Phys. Sin. 48 955 (in Chinese) [汪建华、袁润章、邬钦崇 1999 48 955]

    [6]
    [7]

    Yang W B, Wang J L, Zhang G L, Fan S H, Liu C Z, Yang S Z 2003 Chin. Phys. 12 1257

    [8]

    Joyce G, Lampe M, Fernsler R F 2000 Plasma Sources Sci. Technol. 9 429

    [9]
    [10]
    [11]

    Wilhelm R 1989 Fusion Engineering and Design 11 167

    [12]
    [13]

    Roth J R, Gerdin G A, Richard W. Richardson 1976 IEEE Transactions on Plasma Science PS -4 166

    [14]

    Ezumi N, Masuzaki S, Ohno N, Usugi Y, Takamura S 2003 Journal of Nuclear Materials 313-316 696

    [15]
    [16]
    [17]

    Sekine T, Saito T, Tatematsu Y, Yasuoka T, Ikegami H, Nagai D 2004 Review of Scientific Instruments 75 4317

    [18]
    [19]

    da Silva R P, Nascimento I C, da Cruz D F, Jr 1986 Rev. Sci. Instrum 57 2205

    [20]
    [21]

    Shen W L, Ma Z B, Tan B S 2010 Journal of Wuhan Institute of Technology 32 53 (in Chinese) [沈武林、马志斌、谭必松 2010 武汉工程大学学报 32 53]

    [22]
    [23]

    Deli Tang, Paul K C 2003 Journal of Applied Physics 93 5883

    [24]

    Rose D J, Clark M, Jr. 1961 Plasmas and Controlled Fusion (Volume 1) (New York: The M.I.T. Press) p161

    [25]
    [26]
    [27]

    Roth J R 1973 IEEE Trans. on Plasma Sci. 1 34

    [28]

    Roth J R, Gerdin G A 1976 Plasma Physics 19 423

    [29]
    [30]

    Roth J R 1995 Industrial Plasma Engineering (Volume 1) (Knoxville: Taylor Francis) p137

    [31]
  • [1]

    Sun J,Wu J D, Zhong X X, Lai B 2000 Chinese Journal of Semiconductors 21 1019 (in Chinese) [孙 剑、吴嘉达、钟晓霞、来 冰 2000 半导体学报 21 1019]

    [2]

    Ning Z Y, Cheng S H 1999 Acta Phys. Sin. 48 1950 (in Chinese) [宁兆元、程珊华 1999 48 1950]

    [3]
    [4]
    [5]

    Wang J H, Yuan R Z, Wu Q C 1999 Acta Phys. Sin. 48 955 (in Chinese) [汪建华、袁润章、邬钦崇 1999 48 955]

    [6]
    [7]

    Yang W B, Wang J L, Zhang G L, Fan S H, Liu C Z, Yang S Z 2003 Chin. Phys. 12 1257

    [8]

    Joyce G, Lampe M, Fernsler R F 2000 Plasma Sources Sci. Technol. 9 429

    [9]
    [10]
    [11]

    Wilhelm R 1989 Fusion Engineering and Design 11 167

    [12]
    [13]

    Roth J R, Gerdin G A, Richard W. Richardson 1976 IEEE Transactions on Plasma Science PS -4 166

    [14]

    Ezumi N, Masuzaki S, Ohno N, Usugi Y, Takamura S 2003 Journal of Nuclear Materials 313-316 696

    [15]
    [16]
    [17]

    Sekine T, Saito T, Tatematsu Y, Yasuoka T, Ikegami H, Nagai D 2004 Review of Scientific Instruments 75 4317

    [18]
    [19]

    da Silva R P, Nascimento I C, da Cruz D F, Jr 1986 Rev. Sci. Instrum 57 2205

    [20]
    [21]

    Shen W L, Ma Z B, Tan B S 2010 Journal of Wuhan Institute of Technology 32 53 (in Chinese) [沈武林、马志斌、谭必松 2010 武汉工程大学学报 32 53]

    [22]
    [23]

    Deli Tang, Paul K C 2003 Journal of Applied Physics 93 5883

    [24]

    Rose D J, Clark M, Jr. 1961 Plasmas and Controlled Fusion (Volume 1) (New York: The M.I.T. Press) p161

    [25]
    [26]
    [27]

    Roth J R 1973 IEEE Trans. on Plasma Sci. 1 34

    [28]

    Roth J R, Gerdin G A 1976 Plasma Physics 19 423

    [29]
    [30]

    Roth J R 1995 Industrial Plasma Engineering (Volume 1) (Knoxville: Taylor Francis) p137

    [31]
  • [1] 王丽, 温德奇, 田崇彪, 宋远红, 王友年. 容性耦合等离子体中电子加热过程及放电参数控制.  , 2021, 70(9): 095214. doi: 10.7498/aps.70.20210473
    [2] 李文秋, 赵斌, 王刚. 电子温度对螺旋波等离子体中电磁模式能量沉积特性的影响.  , 2020, 69(21): 215201. doi: 10.7498/aps.69.20201018
    [3] 马志斌, 沈武林, 吴俊, 严垒, 汪建华. 圆筒电极对离子磁电加热的影响.  , 2013, 62(1): 015202. doi: 10.7498/aps.62.015202
    [4] 王海兴, 孙素蓉, 陈士强. 双温度氦等离子体输运性质计算.  , 2012, 61(19): 195203. doi: 10.7498/aps.61.195203
    [5] 刘金远, 陈龙, 王丰, 王楠, 段萍. 聚变等离子体中尘埃杂质的带电和运动特性及温度变化研究.  , 2010, 59(12): 8692-8700. doi: 10.7498/aps.59.8692
    [6] 张继彦, 杨家敏, 许 琰, 杨国洪, 颜 君, 孟广为, 丁耀南, 汪 艳. 辐射加热Al等离子体的吸收谱实验.  , 2008, 57(2): 985-989. doi: 10.7498/aps.57.985
    [7] 郭庆林, 周玉龙, 张 博, 张秋琳, 张金平, 怀素芳. 减压氩气下基体对激光微等离子体电子温度的影响.  , 2007, 56(9): 5318-5322. doi: 10.7498/aps.56.5318
    [8] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响.  , 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [9] 盛正卯, 王 庸, 马 健, 郑思波. 静电波对磁化等离子体的共振加热的理论及数值模拟研究.  , 2006, 55(3): 1301-1306. doi: 10.7498/aps.55.1301
    [10] 丁万昱, 徐 军, 李艳琴, 朴 勇, 高 鹏, 邓新绿, 董 闯. 微波ECR等离子体增强磁控溅射制备SiNx薄膜及其性能分析.  , 2006, 55(3): 1363-1368. doi: 10.7498/aps.55.1363
    [11] 张治国, 刘天伟, 徐 军, 邓新禄, 董 闯. MW-ECR PE-UMS等离子体特性及对Zr-N薄膜结构性能的影响.  , 2005, 54(7): 3257-3262. doi: 10.7498/aps.54.3257
    [12] 杨武保, 王久丽, 张谷令, 范松华, 刘赤子, 杨思泽. 丙酮环境下ECR微波等离子体辅助化学气相沉积类金刚石薄膜研究.  , 2004, 53(9): 3099-3103. doi: 10.7498/aps.53.3099
    [13] 王薇, 张杰, V.K.Senecha. 对激光等离子体中X射线的产生与辐射加热研究.  , 2002, 51(3): 590-595. doi: 10.7498/aps.51.590
    [14] 汪建华, 袁润章, 邬钦崇, 任兆杏. 用微波ECR等离子体溅射法在蓝宝石(0112)晶面上生长ZnO薄膜的研究.  , 1999, 48(5): 955-960. doi: 10.7498/aps.48.955
    [15] 关维恕, 王恩耀, 程仕清, 段淑云, 王纪海, 顾彪, 尚振奎. 电子迥旋加热等离子体及热电子环特性的实验研究.  , 1989, 38(2): 228-235. doi: 10.7498/aps.38.228
    [16] 陈雁萍, 周玉美. 弱相对论性非热平衡等离子体的电子迴旋共振加热.  , 1984, 33(7): 1050-1057. doi: 10.7498/aps.33.1050
    [17] 石秉仁. 快加热环流器等离子体的位形演变.  , 1981, 30(9): 1196-1205. doi: 10.7498/aps.30.1196
    [18] 徐至展, 李安民, 陈时胜, 林礼煌, 梁向春, 欧阳斌, 毕无忌, 何兴法, 殷光裕, 张树干, 潘成明. 激光加热等离子体研究.  , 1981, 30(8): 1077-1084. doi: 10.7498/aps.30.1077
    [19] 姚鑫兹, 祖钦信, 徐瑶, 高鹏, 何凤杰, 李宝环. 用激光散射法测量等离子体的电子温度和θ-收缩等离子体能量损失的研究.  , 1979, 28(6): 824-832. doi: 10.7498/aps.28.824
    [20] 谭维翰, 徐至展. 激光等离子体的单频及双频加热.  , 1977, 26(2): 133-148. doi: 10.7498/aps.26.133
计量
  • 文章访问数:  8659
  • PDF下载量:  670
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-23
  • 修回日期:  2010-12-14
  • 刊出日期:  2011-05-05

/

返回文章
返回
Baidu
map