-
为明确InSb芯片前表面结构缺陷和背面减薄工艺对InSb芯片变形的影响, 本文采用降低InSb芯片法线方向杨氏模量的方式, 基于热冲击下InSb芯片的典型形变特征来探索InSb芯片力学参数的选取依据. 模拟结果表明: 当InSb芯片法线方向杨氏模量取体材料的30%时, 最大Von Mises应力值和法线方向最大应变值均出现在N电极区域, 且极值呈非连续分布, 这与InSb焦平面探测器碎裂统计报告中典型裂纹起源于N电极区域及多条裂纹同时出现的结论相符合. 此外, InSb芯片中铟柱上方区域向上凸起, 台面结隔离槽区域往下凹陷, 该形变分布也与典型碎裂照片中InSb芯片的应变分布保持一致. 因此, 基于InSb芯片法线方向应变的判据除了能够预测裂纹起源地及裂纹分布外, 还能提供探测器阵列中心区域Z方向应变分布及N电极区域Z方向的应变增强效应, 为InSb芯片力学参数的选取提供了依据.In order to learn the effects of front surface structural defects and back surface thinning process on the InSb chip deformation, its elastic modulus along normal direction is reduced in InSb structural modeling, and based on the typical strain character appearing under thermal shock, the mechanical parameter selection basis is deduced in this paper. Simulation results show that when the out-of-plane elastic modulus of InSb chip is set to be 30 percent Young's modulus, both the maximum Von Mises stress and Z component of strain appear in the N electrode zone, and the extremum values present non-continuous distribution. These are in good agreement with fracture origination zone and crack distribution in the fracture statistics results of 128 128 InSb infrared focal plane array under thermal shock. Besides, the region above the indium bump array is convex upward, and the domain above the isolation trough is concave downward, they are also identical with the scenario of Z component of strain in InSb chip under thermal shock. All these results indicate that the Z component of strain criterion can not only predict both crack origination zone and crack distribution, but also support both Z component of strain distribution in the central region and Z component of strain enhancement effect in the InSb chip N electrode zone.
-
Keywords:
- focal plane array /
- InSb /
- structural stress
[1] He L, Yang D J, Ni G Q 2011 Introduction to Advanced Focal Plane Arrays (1st Ed.) (Beijing: National Defence Industry Press) p1 (in Chinese) [何力, 杨定江, 倪国强 2011 先进焦平面技术导论(第1版) (北京:国防工业出版社) 第1页]
[2] Tidrow M Z 2005 Proceedings of SPIE, Bellingham, WA, March 25-28, 2005 p217
[3] Gong H M, Liu D F 2008Infrared Laser Eng. 37 18 (in Chinese) [龚海梅, 刘大福 2008 红外与激光工程 37 18]
[4] Dorn R J, Finger G, Huster G, Lizon J L, Mehrgan H, Meyer M, Stegmeier J, Moorwood A F M 2002 Eur. Southern Observatory. 1 1
[5] Meng Q D, Zhang X L, Zhang L W, Lv Y Q 2012 Acta Phys. Sin. 61 190701 (in Chinese) [孟庆端, 张晓玲, 张立文, 吕衍秋 2012 61 190701]
[6] Liu Y D, Du H Y, Zhang G, Dong S, Ma J S 2005 Laser Infrared. 35 177 (in Chinese) [刘豫东, 杜红燕, 张刚, 董硕, 马莒生 2005 激光与红外 35 177]
[7] Jiun H H, Ahmad I, Jalar A, Omar G 2006 Microelectron. Reliab. 46 836
[8] Wasmer K, Ballif C, Pouvreau C, Schulz D, Michler J 2008 J. Mater. Process. Technol. 198 114
[9] Schönfelder S, Ebert M, Bagdahn J 2006 Proceedings of EuroSimE, Como, Italy, April 24-26, 2006 p1
[10] Pandolfi A, Weinberg K 2011 Eng. Fract. Mech. 78 2052
[11] Jiang Y T, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Techn. 45 143
[12] He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochimica Acta. 357-358 1
[13] White G K, Collins J G 1972 J. Low. Temp. Phys. 7 43
[14] Cheng X, Liu C, Silberschmidt V V 2012 Comp. Mater. Sci. 52 274
[15] Chang R W, Patrick M F 2009 J. Electron. Mater. 38 1855
[16] Pau I, Majeed B, Razeeb K M, Barton J 2006 Acta Mater. 54 3991
[17] Hauck T, Bohm C, Müller W H 2005 Proceedings of EuroSimE, Berlin, Germany, April 18-20, 2005 p242
-
[1] He L, Yang D J, Ni G Q 2011 Introduction to Advanced Focal Plane Arrays (1st Ed.) (Beijing: National Defence Industry Press) p1 (in Chinese) [何力, 杨定江, 倪国强 2011 先进焦平面技术导论(第1版) (北京:国防工业出版社) 第1页]
[2] Tidrow M Z 2005 Proceedings of SPIE, Bellingham, WA, March 25-28, 2005 p217
[3] Gong H M, Liu D F 2008Infrared Laser Eng. 37 18 (in Chinese) [龚海梅, 刘大福 2008 红外与激光工程 37 18]
[4] Dorn R J, Finger G, Huster G, Lizon J L, Mehrgan H, Meyer M, Stegmeier J, Moorwood A F M 2002 Eur. Southern Observatory. 1 1
[5] Meng Q D, Zhang X L, Zhang L W, Lv Y Q 2012 Acta Phys. Sin. 61 190701 (in Chinese) [孟庆端, 张晓玲, 张立文, 吕衍秋 2012 61 190701]
[6] Liu Y D, Du H Y, Zhang G, Dong S, Ma J S 2005 Laser Infrared. 35 177 (in Chinese) [刘豫东, 杜红燕, 张刚, 董硕, 马莒生 2005 激光与红外 35 177]
[7] Jiun H H, Ahmad I, Jalar A, Omar G 2006 Microelectron. Reliab. 46 836
[8] Wasmer K, Ballif C, Pouvreau C, Schulz D, Michler J 2008 J. Mater. Process. Technol. 198 114
[9] Schönfelder S, Ebert M, Bagdahn J 2006 Proceedings of EuroSimE, Como, Italy, April 24-26, 2006 p1
[10] Pandolfi A, Weinberg K 2011 Eng. Fract. Mech. 78 2052
[11] Jiang Y T, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Techn. 45 143
[12] He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochimica Acta. 357-358 1
[13] White G K, Collins J G 1972 J. Low. Temp. Phys. 7 43
[14] Cheng X, Liu C, Silberschmidt V V 2012 Comp. Mater. Sci. 52 274
[15] Chang R W, Patrick M F 2009 J. Electron. Mater. 38 1855
[16] Pau I, Majeed B, Razeeb K M, Barton J 2006 Acta Mater. 54 3991
[17] Hauck T, Bohm C, Müller W H 2005 Proceedings of EuroSimE, Berlin, Germany, April 18-20, 2005 p242
计量
- 文章访问数: 6607
- PDF下载量: 620
- 被引次数: 0