-
以Nd(Ⅲ)作为放射性核素An(Ⅲ)的模拟替代物, 以Gd2O3和ZrO2粉体为原料, 通过高温固相反应法(1500 ℃, 保温72 h)合成了Gd2-xNdxZr2O7(0≤ x ≤ 2.0) 微米级的钆锆烧绿石固化An(Ⅲ)的模拟固化体. 利用X射线衍射仪、显微硬度计和扫描电子显微镜等对所制备样品的物相、 密度、维氏硬度和微观形貌进行了表征. 结果表明: Gd2-xNdxZr2O7(0≤ x ≤ 2.0)系列固化体样品多呈板状, 均为烧绿石相; 其密度值随固溶量x值的增加, 呈逐渐下降趋势, 但均 ≥5.76 g·cm-3. 固化体的维氏硬度值(HV)随x值的递增呈逐渐减小趋势, x值与维氏硬度值之间满足HV=695.18636-162.64091 x的线性关系, 但维氏硬度值均≥ 400 kg·mm-2以上.In order to investigate the capability of Gd2Zr2O7 pyrochlore as a waste form for immobilizing trivalent actinides nuclides, Nd(Ⅲ) is used as an alternative substance for An(Ⅲ). The compounds in the system Gd2-xNdxZr2O7 (0≤ x ≤ 2.0) are synthesized at 1500 ℃ for 72 h by high temperature solid state reaction method, using Gd2O3 and ZrO2 powders as the raw materials. The phase, intensity, Vickers hardness and microcosmic shape are characterized by X-ray diffraction, Vickers hardness tester, scanning electron microscopy and so on. The results indicate that the phase of synthesized waste form with plate-shape keeps the phase of pyrochlore. The intensity of compound slightly decreases with the increase of the containment capacity value x, but it is above 5.76 g·cm-3. The value of Vickers hardness also decreases with the increase of x. The values of x and Vickers hardness are linearly related by HV=695.18636-162.64091 x (HV≥ 400 kg·mm-2).
-
Keywords:
- Gd2Zr2O7 pyrochlore /
- waste forms /
- containment capacity /
- phase composition
[1] Amin Y M 1989 Nucl. Instrum. Methods Phys. Res. 280 314
[2] Nasdala L, Irmer G, Wolf D 1995 Eur. J. Mineral. 7 471
[3] Weber W J 1991 Radiation Effects and Defects in Solids 115 341
[4] Clarke D R 1983 Ann. Rev. Mater. Sci. 13 191
[5] Robert L E J 1990 Annu. Rev. Part. Sci. 40 79
[6] Wang S X, Begg B D, Wang L M, Ewing R C, Weber W J, Govidan Kutty K V 1999 J. Mater. Res. 14 4470
[7] Weber W J, Ewing R C 2000 Science 289 2051
[8] Sickafus K E, Minervini L, Grimes R W 2000 Science 289 748
[9] Ewing R C, Weber W J, Lian J 2004 J. Appl. Phys. 95 5949
[10] Chen J, Lian J, Wang L M, Ewing R C 2001 Appl. Phys. Lett. 79 1989
[11] Lian J, Wang L M, Chen J, Sun K, Ewing R C, Farmer J M, Boatner L A 2003 Acta Mater. 51 1493
[12] Lian J, Wang L M, Haire R G, Helean K B, Ewing R C 2004 Nucl. Instrum. Methods Phys. Res. B 218 236
[13] Lian J, Ewing R C, Wang L M, Helean K B 2004 J. Mater. Res. 19 1575
[14] Zhang F X, Lian J, Zhang J M, Moreno K J, Fuentes A F, Wang Z W, Ewing R C 2010 Journal of Alloy and Compounds 494 34
[15] Pan Z L 1993 Crystallography and Mineralogy (Vol. 1) (Beijing: Geology Press) p152 (in Chinese) [潘兆鲁 1993 结晶学及矿物学(上) (北京: 地质出版社) 第152页]
-
[1] Amin Y M 1989 Nucl. Instrum. Methods Phys. Res. 280 314
[2] Nasdala L, Irmer G, Wolf D 1995 Eur. J. Mineral. 7 471
[3] Weber W J 1991 Radiation Effects and Defects in Solids 115 341
[4] Clarke D R 1983 Ann. Rev. Mater. Sci. 13 191
[5] Robert L E J 1990 Annu. Rev. Part. Sci. 40 79
[6] Wang S X, Begg B D, Wang L M, Ewing R C, Weber W J, Govidan Kutty K V 1999 J. Mater. Res. 14 4470
[7] Weber W J, Ewing R C 2000 Science 289 2051
[8] Sickafus K E, Minervini L, Grimes R W 2000 Science 289 748
[9] Ewing R C, Weber W J, Lian J 2004 J. Appl. Phys. 95 5949
[10] Chen J, Lian J, Wang L M, Ewing R C 2001 Appl. Phys. Lett. 79 1989
[11] Lian J, Wang L M, Chen J, Sun K, Ewing R C, Farmer J M, Boatner L A 2003 Acta Mater. 51 1493
[12] Lian J, Wang L M, Haire R G, Helean K B, Ewing R C 2004 Nucl. Instrum. Methods Phys. Res. B 218 236
[13] Lian J, Ewing R C, Wang L M, Helean K B 2004 J. Mater. Res. 19 1575
[14] Zhang F X, Lian J, Zhang J M, Moreno K J, Fuentes A F, Wang Z W, Ewing R C 2010 Journal of Alloy and Compounds 494 34
[15] Pan Z L 1993 Crystallography and Mineralogy (Vol. 1) (Beijing: Geology Press) p152 (in Chinese) [潘兆鲁 1993 结晶学及矿物学(上) (北京: 地质出版社) 第152页]
计量
- 文章访问数: 6763
- PDF下载量: 535
- 被引次数: 0