搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铈低压冲击相变数值模拟研究

潘昊 胡晓棉 吴子辉 戴诚达 吴强

引用本文:
Citation:

铈低压冲击相变数值模拟研究

潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强

Numerical study of shock-induced phase transformation of cerium under low pressure

Pan Hao, Hu Xiao-Mian, Wu Zi-Hui, Dai Cheng-Da, Wu Qiang
PDF
导出引用
  • 对金属铈低压冲击γ → α相变进行了数值模拟研究.冲击加载实验的速度剖面结果表明,铈的低压相变过程中两相之间的转换较为光滑,无明显间断,其相变过程存在动态因素.通过分析金属铈低压冲击加载和卸载下的典型物理过程,对材料本构关系、Hugoniot关系和相变与逆相变过程进行了理论研究.获取了铈低压相变前后的本构关系及状态方程,并建立了非平衡相变理论模型.数值计算结果与平面冲击实验符合较好,表明该相变动态模型能够较好地描述铈的低压冲击加载和卸载过程.
    The dynamic responses of cerium under low pressure, including γ →α phase transition, are numerically studied in this paper. The velocity profiles of shock experiments show that the transition process between the two phases is smooth and there is no obvious disconnection between the two plastic waves of the particle velocity profiles. Three important problems in the dynamic response, including constitutive model, Hugoniot relation and phase transition/reversal, are discussed. A multi-phase equation of state and constitutive model of Ce are presented in this paper after analyzing the typical wave configuration of cerium under the shock loading and releasing. The dynamic phase transition model is built for the non-equilibrium course in the phase γ → α transition induced by shock wave. The numerical results accord with the experimental data of the plane impact tests, indicating that the dynamic phase transition model can describe the dynamic response under low pressure of cerium more reasonably.
    • 基金项目: 爆炸科学与技术国家重点实验室开放基金(批准号: KFJJ11-5M)资助的课题.
    • Funds: Project supported by the Opening Foundation of State Key Laboratory of Explosion Science and Technology, China (Grant No. KFJJ11-5M).
    [1]

    Andrews D J 1971 J. Comp. Phys. 7 310

    [2]

    Andrews D J 1973 J. Phys. Chem. Solids 34 85

    [3]

    Hayes D B 1975 J. Appl. Phys. 46 3438

    [4]

    Boettger J C 1997 Phys. Rev. B 55 2840

    [5]

    Duvall G E, Graham R A 1977 Rev. Mod. Phys. 49 523

    [6]

    Kamegai M 1975 J. Appl. Phys. 46 1618

    [7]

    Chen Y T, Tang X J, Li Q Z 2011 Acta Phys. Sin. 60 046401 (in Chinese) [陈永涛, 唐小军, 李庆忠 2011 60 046401]

    [8]

    Tan Y, Yu Y Y, Dai C D, Tan H, Wang Q S, Wang X 2011 Acta Phys. Sin. 60 106401 (in Chinese) [谭叶, 俞宇颖,戴诚达, 谭华, 王青松, 王翔 2011 60 106401]

    [9]

    Shao J L, Wang P, Qin C S, Zhou H Q 2007 Acta Phys. Sin. 56 5389 (in Chinese) [邵建立, 王裴, 秦承森, 周洪强 2007 56 5389]

    [10]

    Shao J L, Duan S Q, He A M, Qin C S, Wang P 2009 J. Phys.: Condens. Matter 21 245703

    [11]

    Shao J L, Duan S Q, He A M, Wang P, Qin C S 2010 J. Phys.: Condens. Matter 22 355403

    [12]

    El'kin V M, Kozlov E A, Kakshina E V, Moreva Yu S 2006 Phys. Met. Metallogr. 101 208

    [13]

    Guo Y B, Tang Z P, Xu S L 2004 Acta Mech. Solida Sin. 25 417 (in Chinese) [郭扬波, 唐志平, 徐松林 2004 固体力学学报 25 417]

    [14]

    Steinberg D J, Cochran S G, Guinan W W 1980 J. Appl. Phys. 51 1948

    [15]

    Cox G A 2006 AIP Conf. Proc. Baltimore USA, July 31-August 5, 2005 p208

    [16]

    Song H F, Liu H F, Zhang G C, Zhao Y H 2009 Chin. Phys. Lett. 26 066401

    [17]

    Decremps F, Belhadi L, Farber D L, Moore K T, Occelli F, Gauthier M, Polian A, Antonangeli D, Aracne-Ruddle C M, Amadon B 2011 Phys. Rev. Lett. 106 065701

    [18]

    Voronov F F, Goncharova V A, Stalgorova O V 1979 J. Exp. Tech. Phys. 76 1351

    [19]

    Fowles G R 1961 J. Appl. Phys. 32 1475

    [20]

    Barker L M, Lundergan C D 1964 J. Appl. Phys. 35 1203

    [21]

    Dwivedi S K, Asay J R, Gupta Y M 2006 J. Appl. Phys. 100 083509

    [22]

    Singh A K 1980 High Temp. High Press. 12 47

    [23]

    Vinet P, Rose J H, Ferrante J, Smith J R 1989 J. Phys.: Condens. Matter 1 1941

    [24]

    Jensen B J, Cherne F J, Cooley J C, Zhernokletov M V, Kovalev A E 2010 Phys. Rev. B 81 214109

    [25]

    Lee E H, Liu D T 1967 J. Appl. Phys. 38 19

    [26]

    Li X M, Yu Y Y, Li Y H, Zhang L, Ma Y, Wang X S, Fu Q W 2010 Acta Phys. Sin. 59 2691 (in Chinese) [李雪梅, 俞宇颖, 李英华, 张林, 马云, 汪小松, 付秋卫 2010 59 2691]

  • [1]

    Andrews D J 1971 J. Comp. Phys. 7 310

    [2]

    Andrews D J 1973 J. Phys. Chem. Solids 34 85

    [3]

    Hayes D B 1975 J. Appl. Phys. 46 3438

    [4]

    Boettger J C 1997 Phys. Rev. B 55 2840

    [5]

    Duvall G E, Graham R A 1977 Rev. Mod. Phys. 49 523

    [6]

    Kamegai M 1975 J. Appl. Phys. 46 1618

    [7]

    Chen Y T, Tang X J, Li Q Z 2011 Acta Phys. Sin. 60 046401 (in Chinese) [陈永涛, 唐小军, 李庆忠 2011 60 046401]

    [8]

    Tan Y, Yu Y Y, Dai C D, Tan H, Wang Q S, Wang X 2011 Acta Phys. Sin. 60 106401 (in Chinese) [谭叶, 俞宇颖,戴诚达, 谭华, 王青松, 王翔 2011 60 106401]

    [9]

    Shao J L, Wang P, Qin C S, Zhou H Q 2007 Acta Phys. Sin. 56 5389 (in Chinese) [邵建立, 王裴, 秦承森, 周洪强 2007 56 5389]

    [10]

    Shao J L, Duan S Q, He A M, Qin C S, Wang P 2009 J. Phys.: Condens. Matter 21 245703

    [11]

    Shao J L, Duan S Q, He A M, Wang P, Qin C S 2010 J. Phys.: Condens. Matter 22 355403

    [12]

    El'kin V M, Kozlov E A, Kakshina E V, Moreva Yu S 2006 Phys. Met. Metallogr. 101 208

    [13]

    Guo Y B, Tang Z P, Xu S L 2004 Acta Mech. Solida Sin. 25 417 (in Chinese) [郭扬波, 唐志平, 徐松林 2004 固体力学学报 25 417]

    [14]

    Steinberg D J, Cochran S G, Guinan W W 1980 J. Appl. Phys. 51 1948

    [15]

    Cox G A 2006 AIP Conf. Proc. Baltimore USA, July 31-August 5, 2005 p208

    [16]

    Song H F, Liu H F, Zhang G C, Zhao Y H 2009 Chin. Phys. Lett. 26 066401

    [17]

    Decremps F, Belhadi L, Farber D L, Moore K T, Occelli F, Gauthier M, Polian A, Antonangeli D, Aracne-Ruddle C M, Amadon B 2011 Phys. Rev. Lett. 106 065701

    [18]

    Voronov F F, Goncharova V A, Stalgorova O V 1979 J. Exp. Tech. Phys. 76 1351

    [19]

    Fowles G R 1961 J. Appl. Phys. 32 1475

    [20]

    Barker L M, Lundergan C D 1964 J. Appl. Phys. 35 1203

    [21]

    Dwivedi S K, Asay J R, Gupta Y M 2006 J. Appl. Phys. 100 083509

    [22]

    Singh A K 1980 High Temp. High Press. 12 47

    [23]

    Vinet P, Rose J H, Ferrante J, Smith J R 1989 J. Phys.: Condens. Matter 1 1941

    [24]

    Jensen B J, Cherne F J, Cooley J C, Zhernokletov M V, Kovalev A E 2010 Phys. Rev. B 81 214109

    [25]

    Lee E H, Liu D T 1967 J. Appl. Phys. 38 19

    [26]

    Li X M, Yu Y Y, Li Y H, Zhang L, Ma Y, Wang X S, Fu Q W 2010 Acta Phys. Sin. 59 2691 (in Chinese) [李雪梅, 俞宇颖, 李英华, 张林, 马云, 汪小松, 付秋卫 2010 59 2691]

  • [1] 王金玲, 张昆, 林机, 李慧军. 二维激子-极化子凝聚体中冲击波的产生与调控.  , 2024, 73(11): 119601. doi: 10.7498/aps.73.20240229
    [2] 张学阳, 胡望宇, 戴雄英. 冲击下铁的各向异性对晶界附近相变的影响.  , 2024, 73(3): 036201. doi: 10.7498/aps.73.20231081
    [3] 宋睿睿, 邓钦玲, 周绍林. 基于相变与悬链线连续相位调控的超构光子开关.  , 2022, 71(2): 029101. doi: 10.7498/aps.71.20211538
    [4] 皮兴才, 朱炼华, 李志辉, 彭傲平, 张勇豪. 基于宏观方程数值本构关系的气体动理论加速收敛方法.  , 2020, 69(20): 204702. doi: 10.7498/aps.69.20200602
    [5] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟.  , 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [6] 第伍旻杰, 胡晓棉. 面心立方Ce同构相变的分子动力学模拟.  , 2019, 68(20): 203401. doi: 10.7498/aps.68.20190884
    [7] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应.  , 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [8] 刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳. 冲击诱发NiTi形状记忆合金相变行为研究.  , 2013, 62(1): 018103. doi: 10.7498/aps.62.018103
    [9] 王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤. 基于速度干涉仪的冲击波精密调速实验技术研究.  , 2012, 61(13): 135201. doi: 10.7498/aps.61.135201
    [10] 喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮. 多孔脆性介质冲击波压缩破坏的细观机理和图像.  , 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [11] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变.  , 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [12] 王峰, 彭晓世, 刘慎业, 蒋小华, 徐涛, 丁永坤, 张保汉. 三明治靶型在间接驱动冲击波实验中的应用.  , 2011, 60(11): 115203. doi: 10.7498/aps.60.115203
    [13] 李永宏, 刘福生, 程小理, 张明建, 薛学东. 冲击加载条件下融石英对水的凝固相变的诱导效应.  , 2011, 60(12): 126202. doi: 10.7498/aps.60.126202
    [14] 陈永涛, 唐小军, 李庆忠. Fe基α相合金的冲击相变及其对层裂行为的影响研究.  , 2011, 60(4): 046401. doi: 10.7498/aps.60.046401
    [15] 马文, 祝文军, 张亚林, 经福谦. 纳米多晶铁的冲击相变研究.  , 2011, 60(6): 066404. doi: 10.7498/aps.60.066404
    [16] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用.  , 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [17] 俞宇颖, 谭 华, 胡建波, 戴诚达, 陈大年, 王焕然. 冲击波作用下铝的等效剪切模量.  , 2008, 57(4): 2352-2357. doi: 10.7498/aps.57.2352
    [18] 邵建立, 王 裴, 秦承森, 周洪强. 冲击加载下孔洞诱导相变形核分析.  , 2008, 57(2): 1254-1258. doi: 10.7498/aps.57.1254
    [19] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究.  , 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [20] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究.  , 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
计量
  • 文章访问数:  7760
  • PDF下载量:  506
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-10
  • 修回日期:  2012-04-26
  • 刊出日期:  2012-10-05

/

返回文章
返回
Baidu
map