-
The effect of cooling rate on layering the deuterium ice inside inertial confinement fusion (ICF)spherical cryotarget is studied by backlit shadowgraphy. Experimentally, the temperature of ice is first determined by the calibration of temperature field around ICF cryotarget. The solidification process of deuterium in the cryotarget is in- situ characterized by backlit shadowgraphy. The power-spectrum density of the bright ring in shadowgraphy at different cooling rates is obtained. Experimental results demonstrate that the step-gradient slow cooling is favorable for forming uniform fuel ice in comparison with the rapid cooling. Furthermore, the validity of characterizing the ICF cryotarget layering by the backlit shadowgraphy is also verified.
-
Keywords:
- inertial confinement fusion (ICF) /
- layering /
- cooling rates /
- backlit shadowgraphy
[1] Hoffer J K, Foreman L R 1988 Phys. Rev. Lett. 60 1310
[2] Combs S K 1993 Rev. Sci. Instrum. 64 1679
[3] Lindl J 1995 Phys. Plasmas 2 3933
[4] Sheliak J D, Hoffer J K, 1999 Fusion Technol. 35 234
[5] Dai W, Tang Y J, Wang C Y, Sun W G 2009 Acta Phys. Sin. 58 7313 (in Chinese) [戴 伟, 唐永建, 王朝阳, 孙卫国 2009 58 7313]
[6] Bi P, Liu Y Q, Tang Y J, Yang X D, Lei H L 2010 Acta Phys. Sin. 59 7531 (in Chinese) [毕 鹏, 刘元琼, 唐永建, 杨向东, 雷海乐 2010 59 7531]
[7] Haan S W, Callahan D A, Edwards M J, Hammel B A , Ho D D, O S Jones, Lindl J D, MacGowan B J, Marinak M M, Munro D H, Pollaine S M, Salmonson J D, Spears B K, Suter L J 2009 Fusion Sci. Technol. 55 227
[8] Kozioziemski B J, Kucheyev S O, Lugten J B, Koch J A, Moody J D, Chernov A A, Mapoles E A, Hamza A V, Atherton L J 2009 J. Appl. Phys. 105 093512
[9] Miller J R, Fries R J, Press W J 1979 J. Nucl. Mater. 85-86 121
[10] Mok L S, Kim K, Bernat T P 1985 Phys. Fluids 28 1227
[11] Kim K, Krahn D L 1987 J. Appl. Phys. 61 2729
[12] Collins G W, Bittner D N, Monsler E, Letts S, Mapoles E R, Bernat T P 1996 J. Vac. Sci. Technol. A 14 2897
[13] Bittner D N, Collins G W, Sater J D 2003 Fusion Sci. Technol. 44 7492003
[14] London R A, Kozioziemski B J, Marinak M M, Kerbel G D 2006 Fusion Sci. Technol. 49 608
[15] Chen C M, Norimatsu T, Tsuda Y, Yamanaka T, Nakai S 1993 J. Vac. Sci. Technol. A 11 509
[16] Mapoles E R, Sater J, Pipes J, Monsler E, 1997 Phys. Rev. E 55 3473
[17] Kozioziemski B J, Koch J A, Barty A, Martz H E, Lee W K, Fezzaa K 2005 J. Appl. Phys. 97 063103
[18] Wang X F, Wang J Y 2010 Acta Phys. Sin. 60 025212 (in Chinese) [王晓方, 王晶宇 2011 60 025212]
[19] Nikitenko A I, Tolokonnikov S M 2007 Fusion Sci. Technol. 51 705
[20] Lei H L, Li J, Tang Y J, Liu Y Q 2009 Rev. Sci. Instrum. 80 033103S
[21] Lei H L, Li J, Tang Y J, Shi H L, Liu Y Q 2009 High Power Laser and Particle Beams 21 0053 (in Chinese) [雷海乐, 黎 军, 唐永建, 师洪丽, 刘元琼 2009 强激光与粒子束 21 0053]
[22] Lamy F, Vosion Y, Diou A, Martin M, Jeannot L, Pascal G, Hermerel C 2005 Fusion Sci. Technol. 48 1307
[23] Gillot F, Choux A, Jeannot L, Pascal G, Baclet P 2006 Fusion Sci. Technol. 49 626
[24] Liu Y Q, Zhao X S, Lei H L, Xie D, Gao D Z 2010 High Power Laser and Particle Beams 22 0012 (in Chinese) [刘元琼, 赵学森, 雷海乐, 谢 端, 高党忠 2010 强激光与粒子束 22 0012]
-
[1] Hoffer J K, Foreman L R 1988 Phys. Rev. Lett. 60 1310
[2] Combs S K 1993 Rev. Sci. Instrum. 64 1679
[3] Lindl J 1995 Phys. Plasmas 2 3933
[4] Sheliak J D, Hoffer J K, 1999 Fusion Technol. 35 234
[5] Dai W, Tang Y J, Wang C Y, Sun W G 2009 Acta Phys. Sin. 58 7313 (in Chinese) [戴 伟, 唐永建, 王朝阳, 孙卫国 2009 58 7313]
[6] Bi P, Liu Y Q, Tang Y J, Yang X D, Lei H L 2010 Acta Phys. Sin. 59 7531 (in Chinese) [毕 鹏, 刘元琼, 唐永建, 杨向东, 雷海乐 2010 59 7531]
[7] Haan S W, Callahan D A, Edwards M J, Hammel B A , Ho D D, O S Jones, Lindl J D, MacGowan B J, Marinak M M, Munro D H, Pollaine S M, Salmonson J D, Spears B K, Suter L J 2009 Fusion Sci. Technol. 55 227
[8] Kozioziemski B J, Kucheyev S O, Lugten J B, Koch J A, Moody J D, Chernov A A, Mapoles E A, Hamza A V, Atherton L J 2009 J. Appl. Phys. 105 093512
[9] Miller J R, Fries R J, Press W J 1979 J. Nucl. Mater. 85-86 121
[10] Mok L S, Kim K, Bernat T P 1985 Phys. Fluids 28 1227
[11] Kim K, Krahn D L 1987 J. Appl. Phys. 61 2729
[12] Collins G W, Bittner D N, Monsler E, Letts S, Mapoles E R, Bernat T P 1996 J. Vac. Sci. Technol. A 14 2897
[13] Bittner D N, Collins G W, Sater J D 2003 Fusion Sci. Technol. 44 7492003
[14] London R A, Kozioziemski B J, Marinak M M, Kerbel G D 2006 Fusion Sci. Technol. 49 608
[15] Chen C M, Norimatsu T, Tsuda Y, Yamanaka T, Nakai S 1993 J. Vac. Sci. Technol. A 11 509
[16] Mapoles E R, Sater J, Pipes J, Monsler E, 1997 Phys. Rev. E 55 3473
[17] Kozioziemski B J, Koch J A, Barty A, Martz H E, Lee W K, Fezzaa K 2005 J. Appl. Phys. 97 063103
[18] Wang X F, Wang J Y 2010 Acta Phys. Sin. 60 025212 (in Chinese) [王晓方, 王晶宇 2011 60 025212]
[19] Nikitenko A I, Tolokonnikov S M 2007 Fusion Sci. Technol. 51 705
[20] Lei H L, Li J, Tang Y J, Liu Y Q 2009 Rev. Sci. Instrum. 80 033103S
[21] Lei H L, Li J, Tang Y J, Shi H L, Liu Y Q 2009 High Power Laser and Particle Beams 21 0053 (in Chinese) [雷海乐, 黎 军, 唐永建, 师洪丽, 刘元琼 2009 强激光与粒子束 21 0053]
[22] Lamy F, Vosion Y, Diou A, Martin M, Jeannot L, Pascal G, Hermerel C 2005 Fusion Sci. Technol. 48 1307
[23] Gillot F, Choux A, Jeannot L, Pascal G, Baclet P 2006 Fusion Sci. Technol. 49 626
[24] Liu Y Q, Zhao X S, Lei H L, Xie D, Gao D Z 2010 High Power Laser and Particle Beams 22 0012 (in Chinese) [刘元琼, 赵学森, 雷海乐, 谢 端, 高党忠 2010 强激光与粒子束 22 0012]
计量
- 文章访问数: 7321
- PDF下载量: 519
- 被引次数: 0