搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Logistic模型的均值突变时间序列临界预警研究

颜鹏程 侯威 胡经国

引用本文:
Citation:

基于Logistic模型的均值突变时间序列临界预警研究

颜鹏程, 侯威, 胡经国

The critical warning research of the mean time series mutations based on Logistic model

Yan Peng-Cheng, Hou Wei, Hu Jing-Guo
PDF
导出引用
  • 对物理学中的非线性方程——Logistic方程解的稳定性进行分析, 发现当初值和参数取值一定时, 解具有从一种稳定状态突变到另一种稳定状态的特性. 突变的程度和速度与方程的控制参数有关, 可以用定义的突变强度指数来进行描述. 利用方程解的这一特性, 构造满足动力学结构突变的理想时间序列, 模拟气候系统中的均值突变, 考察物理量回复速率和回复力在系统趋近临界阈值时的临界行为, 研究其对系统突变的早期预警能力. 本文还讨论了当系统受到噪声信号干扰时, 回复速率和回复力仍然对系统突变有较好的预警. 最后, 对太平洋年代际振荡(PDO)指数序列进行检测, 检测结果表明早期预警信号出现在1973年前后, 而公认的PDO指数序列的突变发生在1976/1977年, 表明回复速率和回复力在一定程度上可以作为均值突变的早期预警信号.
    In this paper, we analyze the stability of solution of the nonlinear function of physics, the Logistic function. It is found that the solution has a special character that it can change abruptly from one stable state to another when the initial value and parameters of function are selected. Abrupt change level and abrupt change rate are related to parameters of function, which can be described by defining the abrupt change intensity index. By using the character of solution, we build an ideal time series to imitate climate abrupt change in mean of climate system, investigate what behaviors the recovery rate and recovery force can have when the system approaches to a critical threshold, and to ascertain how it warns the abrupt change of the system early. Besides, we also find that even the system is disturbed by some noise signals, the recovery rate and recovery force also make an early response to the arrival of the abrupt change of system. Finally, the result of testing the Pacific Decadal Oscillation (PDO) index showes that the early warning of the abrupt change appeared in 1973, much more early than the abrupt change of PDO index happening in 1976/1977, which means that the recovery rate and recovery force can be used as the early warning signals of the abrupt change in mean.
    • 基金项目: 国家自然科学基金(批准号: 41175067, 41105033)和全球变化研究国家重大科学研究计划(批准号: 2012CB955902)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41175067, 41105033) and the Global Change Research of the National Basic Research Program of China (Grant No. 2012CB955902).
    [1]

    Thom R 1972 Stability Structural and Morphogenesis (Sichuan: Sichuan Education Press) 73 105 (in Chinese) [雷内· 托姆 1972结构稳定性与形态发生学 (四川: 四川教育出版社) 73 105 ]

    [2]

    Fu C B, Wang Q 1992 Scientia Atmospherica Sinica 4 482 (in Chinese) [符淙斌, 王强 1992 大气科学 4 482]

    [3]

    Wei F Y 1999 Modern Climatic Statistical Diagnosis and Forecasting Technology (Beijing: China MeteorologicalPress) pp62-76 (in Chinese) [魏凤英 1999 现代气候统计诊断与预测技术 北京: 气象出版社 第62-76页]

    [4]

    Feng G L, Gong Z Q, Dong W J 2005 Acta Phys. Sin. 54 5494 (in Chinese) [封国林, 龚志强, 董文杰 2005 54 5494]

    [5]

    Wan S Q, Feng G L, Dong W J 2005 Acta Phys. Sin. 54 5487 (in Chinese) [万仕全, 封国林, 董文杰 2005 54 5487]

    [6]

    Gong Z Q, Feng G L, Dong W J, Li J P 2006 Acta Phys. Sin. 55 3180 (in Chinese) [龚志强, 封国林, 董文杰, 李建平 2006 55 3180]

    [7]

    Gong Z Q, Feng G L 2007 Acta Phys. Sin. 56 3619 (in Chinese) [龚志强, 封国林 2007 56 3619]

    [8]

    Feng G L, Gong Z Q, Zhi R 2008 Acta Meteorol. Sin. 66 892 (in Chinese) [封国林, 龚志强, 支容 2008 气象学报 66 892]

    [9]

    He W P, Wu Q, Zhang W, Wang Q G, Zhang Y 2009 Acta Phys. Sin. 58 2862 (in Chinese) [何文平, 吴琼, 张文, 王启光, 张勇 2009 58 2862]

    [10]

    He W P, Deng B S, Wu Q, Zhang W, Cheng H Y 2010 Acta Phys. Sin. 59 8264 (in Chinese) [何文平, 邓北胜, 吴琼, 张文, 成海英 2010 59 8264]

    [11]

    He W P, Wu Q, Cheng H Y, Zhang W 2011 Acta Phys. Sin. 60 029203 (in Chinese) [何文平, 吴琼, 程海英, 张文 2011 60 029203]

    [12]

    He W P, Feng G L, Wu Q, He T, Wan S Q, Chou J F 2011 Int. J. Climatology DOI: 10.1002/joc.2367

    [13]

    He W P, Feng G L, Wu Q, Wan S Q, Chou J F 2008 Nonlinear Processes in Geophysics 15 601

    [14]

    Alley R B, Marotzke J, Nordhaus W D 2005 Science 299 5615

    [15]

    Scheffer M, Bascompte J, William A 2009 Nature 461 53

    [16]

    Carpenter S R, Brook W A 2006 Ecology Letters 9 311

    [17]

    Guttal V, Jayaprakash C 2008 Ecology Letters 11 450

    [18]

    May R 1976 Nature 261 459

    [19]

    Mamtua N J, Mantua S R, Zhang H Y 1997 Bull. Amet. Meteor. Soc. 78 1069-1080

    [20]

    Gu D J, Wang D X, Li C H 2003 Journal of Tropical Meteorology 19 136 (in Chinese) [谷德军, 王东晓, 李春辉 2003 热带气象学报 19 136]

    [21]

    Gu W, Li C Y 2010 Transactions of Atmospheric Sciences 33 401 (in Chinese) [顾薇, 李崇银 2010 大气科学学报 33 401]

  • [1]

    Thom R 1972 Stability Structural and Morphogenesis (Sichuan: Sichuan Education Press) 73 105 (in Chinese) [雷内· 托姆 1972结构稳定性与形态发生学 (四川: 四川教育出版社) 73 105 ]

    [2]

    Fu C B, Wang Q 1992 Scientia Atmospherica Sinica 4 482 (in Chinese) [符淙斌, 王强 1992 大气科学 4 482]

    [3]

    Wei F Y 1999 Modern Climatic Statistical Diagnosis and Forecasting Technology (Beijing: China MeteorologicalPress) pp62-76 (in Chinese) [魏凤英 1999 现代气候统计诊断与预测技术 北京: 气象出版社 第62-76页]

    [4]

    Feng G L, Gong Z Q, Dong W J 2005 Acta Phys. Sin. 54 5494 (in Chinese) [封国林, 龚志强, 董文杰 2005 54 5494]

    [5]

    Wan S Q, Feng G L, Dong W J 2005 Acta Phys. Sin. 54 5487 (in Chinese) [万仕全, 封国林, 董文杰 2005 54 5487]

    [6]

    Gong Z Q, Feng G L, Dong W J, Li J P 2006 Acta Phys. Sin. 55 3180 (in Chinese) [龚志强, 封国林, 董文杰, 李建平 2006 55 3180]

    [7]

    Gong Z Q, Feng G L 2007 Acta Phys. Sin. 56 3619 (in Chinese) [龚志强, 封国林 2007 56 3619]

    [8]

    Feng G L, Gong Z Q, Zhi R 2008 Acta Meteorol. Sin. 66 892 (in Chinese) [封国林, 龚志强, 支容 2008 气象学报 66 892]

    [9]

    He W P, Wu Q, Zhang W, Wang Q G, Zhang Y 2009 Acta Phys. Sin. 58 2862 (in Chinese) [何文平, 吴琼, 张文, 王启光, 张勇 2009 58 2862]

    [10]

    He W P, Deng B S, Wu Q, Zhang W, Cheng H Y 2010 Acta Phys. Sin. 59 8264 (in Chinese) [何文平, 邓北胜, 吴琼, 张文, 成海英 2010 59 8264]

    [11]

    He W P, Wu Q, Cheng H Y, Zhang W 2011 Acta Phys. Sin. 60 029203 (in Chinese) [何文平, 吴琼, 程海英, 张文 2011 60 029203]

    [12]

    He W P, Feng G L, Wu Q, He T, Wan S Q, Chou J F 2011 Int. J. Climatology DOI: 10.1002/joc.2367

    [13]

    He W P, Feng G L, Wu Q, Wan S Q, Chou J F 2008 Nonlinear Processes in Geophysics 15 601

    [14]

    Alley R B, Marotzke J, Nordhaus W D 2005 Science 299 5615

    [15]

    Scheffer M, Bascompte J, William A 2009 Nature 461 53

    [16]

    Carpenter S R, Brook W A 2006 Ecology Letters 9 311

    [17]

    Guttal V, Jayaprakash C 2008 Ecology Letters 11 450

    [18]

    May R 1976 Nature 261 459

    [19]

    Mamtua N J, Mantua S R, Zhang H Y 1997 Bull. Amet. Meteor. Soc. 78 1069-1080

    [20]

    Gu D J, Wang D X, Li C H 2003 Journal of Tropical Meteorology 19 136 (in Chinese) [谷德军, 王东晓, 李春辉 2003 热带气象学报 19 136]

    [21]

    Gu W, Li C Y 2010 Transactions of Atmospheric Sciences 33 401 (in Chinese) [顾薇, 李崇银 2010 大气科学学报 33 401]

  • [1] 孙斌, 赵立臣, 刘杰. 双孤子非线性干涉中的狄拉克磁单极势.  , 2023, 72(10): 100501. doi: 10.7498/aps.72.20222416
    [2] 张玫玫, 高凡, 屠娟, 吴意赟, 章东. 非线性超声射频信号熵对乳腺结节良恶性的定征.  , 2021, 70(8): 084302. doi: 10.7498/aps.70.20201919
    [3] 杨振, 朱璨, 柯亚娇, 何雄, 罗丰, 王剑, 王嘉赋, 孙志刚. Peltier效应: 从线性到非线性.  , 2021, 70(10): 108402. doi: 10.7498/aps.70.20201826
    [4] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应.  , 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [5] 周聪, 王庆良. 考虑频散效应的一维非线性地震波数值模拟.  , 2015, 64(23): 239101. doi: 10.7498/aps.64.239101
    [6] 唐炜, 王小璞, 曹景军. 非线性磁式压电振动能量采集系统建模与分析.  , 2014, 63(24): 240504. doi: 10.7498/aps.63.240504
    [7] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究.  , 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [8] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法.  , 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [9] 闫冠华, 颜鹏程, 侯威, 吴浩. 一种基于Logistic模型的突变过程性分析方法及其应用.  , 2013, 62(7): 079202. doi: 10.7498/aps.62.079202
    [10] 吴钦宽. 一类非线性扰动Burgers方程的孤子变分迭代解法.  , 2012, 61(2): 020203. doi: 10.7498/aps.61.020203
    [11] 张建文, 李金峰, 吴润衡. 强阻尼非线性热弹耦合杆系统的全局吸引子.  , 2011, 60(7): 070205. doi: 10.7498/aps.60.070205
    [12] 杨永锋, 吴亚锋, 任兴民, 裘焱. 随机噪声对经验模态分解非线性信号的影响.  , 2010, 59(6): 3778-3784. doi: 10.7498/aps.59.3778
    [13] 吕君, 赵正予, 张援农, 周晨. 非线性对大气介质中阵列聚焦声场分布影响的研究.  , 2010, 59(12): 8662-8668. doi: 10.7498/aps.59.8662
    [14] 莫嘉琪, 张伟江, 陈贤峰. 一类强非线性发展方程孤波变分迭代解法.  , 2009, 58(11): 7397-7401. doi: 10.7498/aps.58.7397
    [15] 邹建龙, 马西奎. 一类由饱和引起的非线性现象.  , 2008, 57(2): 720-725. doi: 10.7498/aps.57.720
    [16] 赵国伟, 王之江, 徐跃民, 粱志伟, 徐 杰. 射频激励等离子体非线性效应的FDTD数值模拟.  , 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [17] 莫嘉琪, 张伟江, 陈贤峰. 强非线性发展方程孤波同伦解法.  , 2007, 56(11): 6169-6172. doi: 10.7498/aps.56.6169
    [18] 莫嘉琪, 张伟江, 何 铭. 强非线性发展方程孤波近似解.  , 2007, 56(4): 1843-1846. doi: 10.7498/aps.56.1843
    [19] 唐昌建, 钱尚介. 离子通道回旋电子注受激辐射非线性理论.  , 2002, 51(6): 1256-1261. doi: 10.7498/aps.51.1256
    [20] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制.  , 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
计量
  • 文章访问数:  7191
  • PDF下载量:  663
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-14
  • 修回日期:  2012-02-22
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map