搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下强声波脉冲负压的产生和空化气泡运动

张军 曾新吾 陈聃 张振福

引用本文:
Citation:

水下强声波脉冲负压的产生和空化气泡运动

张军, 曾新吾, 陈聃, 张振福

Generation of negative pressure of underwater intensive acoustic pulse and cavitation bubble dynamics

Zhang Jun, Zeng Xin-Wu, Chen Dan, Zhang Zhen-Fu
PDF
导出引用
  • 首先利用高速摄影和压力传感器测量的方法, 对曲面反射式水下强声波脉冲的传播和聚焦过程进行了实验研究.实验研究发现, 椭球面反射罩在起到汇聚声能的作用的同时也将使得强声波脉冲在传播过程中形成负压区, 并由此而引发近场声传播通道上空化气泡群的产生. 在实验结果的基础上, 进一步利用基于Kirchhoff衍射定理的声传播模型和大振幅条件下的QX气泡运动方程, 对强声波脉冲负压区的形成原因及空化气泡的运动过程进行了数值计算和分析. 研究结果表明, 在焦前区, 源于反射罩内表面的"尾波"和出口处的"边缘波"在传播过程中将形成反射波中的负压区; 在焦后区, 源于反射罩顶点的"中心波"在传播过程中将形成反射波中的负压区. 在反射波作用下, 空化气泡体现出了"正压区受压缩并振荡, 负压区膨胀"的运动特点. 在反射波之后, 空化气泡将出现成长、坍缩和回弹等典型的物理过程. 研究结果对曲面反射式水下强声波传播物理规律的认识具有实际意义.
    In this paper, the high speed photography and the pressure measurement are used to study the propagation and focusing process of the underwater intensive acoustic pulse which is reflected from an ellipsoidal reflector. The experimental results indicate that the reflector contribute to both the sound energy focusing and the generation of a negative pressure portion of the intensive acoustic pulse, and the cavitation bubble cluster will be induced to grow accordingly. Based on the experimental results, a sound propagation model derived from Kirchhoff diffraction integral and the equation of bubble dynamics proposed by Qian and Xiao [Qian Z W and Xiao L 2003 Chin. Phys. Lett. 20 80; Qian Z W and Xiao L 2008 Chinese Physics B 17 3785] are used to numerically study the propagation of the intensive acoustic pulse and the bubble motion. The numerical results indicate that the "wake wave" and "edge wave" will evolve into the negative pressure portion of the intensive acoustic pulse in front of the far focus of the reflector and the "center wave" will evolve into the negative pressure part beyond the far focus of the reflector. When the bubble is subjected to the reflected wave, it will be compressed and oscillate periodically during the positive pressure phase, and it will expand during the negative pressure phase of the incident pulse. And after the reflected wave passes, the typical processes of expanding, collapsing and rebounding can be seen clearly from the photographs. The research results have practical significance for understanding the propagation characteristic of the underwater intensive acoustic pulse with an ellipsoidal reflector.
    • 基金项目: 国家自然科学基金(批准号: 11274387)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274387).
    [1]

    Lu X P, Pan Y, Zhang H H 2002 Acta Phys. Sin. 51 1149 (in Chinese) [卢新培, 潘垣, 张寒虹 2002 51 1149]

    [2]

    Wang Y B, Zeng X W, Wang S W 2012 IEEE. Trans. Plasma. Sci. 40 98

    [3]

    Wang Y B, Zeng X W, Wang S W 2012 Chin. Phys. B 21 055203

    [4]

    Li N, Chen J F, Huang J G 2009 Applied Acoustics 28 241 (in Chines) [李宁, 陈建峰, 黄建国 2009 应用声学 28 241]

    [5]

    Zhang J, Zeng X W, Zhang Z F, Wang Y B 2011 Proceeding of the 1st National Conference on Underwater Security and Technology People's Republic of China, April 23-24, 2011 p194

    [6]

    Schaefer R, Grapperhaus M 2006 SPIE Conference of Photonics for Port and Harbor Security II Session 2: Diver Detection and Interdiction USA Florida, April 18, 2006

    [7]

    Karl W R, Penny K R 2002 Non-Lethal Swimmer Neutralization Study Tech. Report ARL (Austin: The University of Texas)

    [8]

    Huang Y F 2011 Proceeding of the 1st National Conference on Underwater Security and Technology People's Republic of China, April 23-24, 2011 p198

    [9]

    Ma T, Huang J G, Lei K Z, Chen J F, Zhang Q F 2010 Journal of Marine Science and Application 1 559

    [10]

    Li N, Huang J G, Lei K Z, Chen J F, Zhang Q F 2011 Journal of Electrostatics 69 291

    [11]

    Fang M, Huang J G, Lei K Z,Li N 2009 Elementary Electroacoustics 33 39 (in Chinese) [方明, 黄建国, 雷开卓, 李宁 2009 电声基础 33 39]

    [12]

    Lei K Z, Liu J S, Zhang Q F, Peng X Q 2009 Mechanical Science and Technology for Aerospace Engineering 28 1068 (in Chinese) [雷开卓, 刘劲松, 张群飞, 彭雄奇 2009 机械科学与技术 28 1068]

    [13]

    Qian Z W, Xiao L 2003 Chin. Phys. Lett. 20 80

    [14]

    Qian Z W, Xiao L 2008 Chin. Phys. B 17 3785

    [15]

    Zhang Z F, Zeng X W, Wang Y B, Chen D 2012 Journal of National University of Defense Technology (in Chinese) [张振福, 曾新吾, 王一博, 陈聃 2012 国防科大学报 已录用]

    [16]

    Wang J W, Li Y J 2006 Matlab 7.0 Graphics and Image Processing (Beijing: National Defense Press) (in Chinese) p250 [王家文, 李仰军 2006 Matlab 7.0 图形图像处理 (北京: 国防工业出版社) p250 ]

    [17]

    Sun C S, Zhang X H, Hang H W 2012 Opto-Electronic Engineering 39 7 (in Chinese) [孙春生, 张晓晖, 韩宏伟 2012 光电工程 39 7]

    [18]

    Cole R H 1948 Underwater Explosions (Princeton: Princeton University Press) p400

    [19]

    Lei K Z, Li N, Huang J G 2010 Journal of Northwestern Polytechnical University 28 102 (in Chinese) [雷开卓, 李宁, 黄建国 2010 西北工业大学学报 28 102]

    [20]

    Leighton T G 1992 The Acoustic Bubble (Princeton: Princeton University Press) p60

    [21]

    An X L, He X, Wang L W, Wang J X 2007 Internal Combustion Engine Engineering 2 1 (in Chinese) [安新亮, 何旭, 王丽雯, 王建昕 2007 内燃机工程 2 1]

    [22]

    Senjenov, (Translated by He Z Y, Zhao J Y) 1983 Wave Problems of Underwater Acoustics (Beijing: National Defense Press) p15 (in Chinese) [沈杰罗夫著(何祚镛, 赵晋英译) 1983 水声学波动问题(北京: 国防工业出版社) p15]

    [23]

    Ji J R 2007 Higher Optical Tutorial (Beijing: Science Press) p164 (in Chinese) [季家镕 2007 高等光学教程 (北京: 科学出版社) p164]

    [24]

    Hamilton M F 1989 J. Acoust. Soc. Am. 93 1256

    [25]

    Qian Z W 2009 Nonlinear Acoustics (2nd Ed.) (Beijing: Science Press) p238 (in Chinese) [钱祖文 2009 非线性声学(第二版)(北京: 科学出版社) 第238页]

    [26]

    Tanguay M, Colonius T 2003 5th International Symposium on Cavitation Osaka, Japan November 1-4, 2003

  • [1]

    Lu X P, Pan Y, Zhang H H 2002 Acta Phys. Sin. 51 1149 (in Chinese) [卢新培, 潘垣, 张寒虹 2002 51 1149]

    [2]

    Wang Y B, Zeng X W, Wang S W 2012 IEEE. Trans. Plasma. Sci. 40 98

    [3]

    Wang Y B, Zeng X W, Wang S W 2012 Chin. Phys. B 21 055203

    [4]

    Li N, Chen J F, Huang J G 2009 Applied Acoustics 28 241 (in Chines) [李宁, 陈建峰, 黄建国 2009 应用声学 28 241]

    [5]

    Zhang J, Zeng X W, Zhang Z F, Wang Y B 2011 Proceeding of the 1st National Conference on Underwater Security and Technology People's Republic of China, April 23-24, 2011 p194

    [6]

    Schaefer R, Grapperhaus M 2006 SPIE Conference of Photonics for Port and Harbor Security II Session 2: Diver Detection and Interdiction USA Florida, April 18, 2006

    [7]

    Karl W R, Penny K R 2002 Non-Lethal Swimmer Neutralization Study Tech. Report ARL (Austin: The University of Texas)

    [8]

    Huang Y F 2011 Proceeding of the 1st National Conference on Underwater Security and Technology People's Republic of China, April 23-24, 2011 p198

    [9]

    Ma T, Huang J G, Lei K Z, Chen J F, Zhang Q F 2010 Journal of Marine Science and Application 1 559

    [10]

    Li N, Huang J G, Lei K Z, Chen J F, Zhang Q F 2011 Journal of Electrostatics 69 291

    [11]

    Fang M, Huang J G, Lei K Z,Li N 2009 Elementary Electroacoustics 33 39 (in Chinese) [方明, 黄建国, 雷开卓, 李宁 2009 电声基础 33 39]

    [12]

    Lei K Z, Liu J S, Zhang Q F, Peng X Q 2009 Mechanical Science and Technology for Aerospace Engineering 28 1068 (in Chinese) [雷开卓, 刘劲松, 张群飞, 彭雄奇 2009 机械科学与技术 28 1068]

    [13]

    Qian Z W, Xiao L 2003 Chin. Phys. Lett. 20 80

    [14]

    Qian Z W, Xiao L 2008 Chin. Phys. B 17 3785

    [15]

    Zhang Z F, Zeng X W, Wang Y B, Chen D 2012 Journal of National University of Defense Technology (in Chinese) [张振福, 曾新吾, 王一博, 陈聃 2012 国防科大学报 已录用]

    [16]

    Wang J W, Li Y J 2006 Matlab 7.0 Graphics and Image Processing (Beijing: National Defense Press) (in Chinese) p250 [王家文, 李仰军 2006 Matlab 7.0 图形图像处理 (北京: 国防工业出版社) p250 ]

    [17]

    Sun C S, Zhang X H, Hang H W 2012 Opto-Electronic Engineering 39 7 (in Chinese) [孙春生, 张晓晖, 韩宏伟 2012 光电工程 39 7]

    [18]

    Cole R H 1948 Underwater Explosions (Princeton: Princeton University Press) p400

    [19]

    Lei K Z, Li N, Huang J G 2010 Journal of Northwestern Polytechnical University 28 102 (in Chinese) [雷开卓, 李宁, 黄建国 2010 西北工业大学学报 28 102]

    [20]

    Leighton T G 1992 The Acoustic Bubble (Princeton: Princeton University Press) p60

    [21]

    An X L, He X, Wang L W, Wang J X 2007 Internal Combustion Engine Engineering 2 1 (in Chinese) [安新亮, 何旭, 王丽雯, 王建昕 2007 内燃机工程 2 1]

    [22]

    Senjenov, (Translated by He Z Y, Zhao J Y) 1983 Wave Problems of Underwater Acoustics (Beijing: National Defense Press) p15 (in Chinese) [沈杰罗夫著(何祚镛, 赵晋英译) 1983 水声学波动问题(北京: 国防工业出版社) p15]

    [23]

    Ji J R 2007 Higher Optical Tutorial (Beijing: Science Press) p164 (in Chinese) [季家镕 2007 高等光学教程 (北京: 科学出版社) p164]

    [24]

    Hamilton M F 1989 J. Acoust. Soc. Am. 93 1256

    [25]

    Qian Z W 2009 Nonlinear Acoustics (2nd Ed.) (Beijing: Science Press) p238 (in Chinese) [钱祖文 2009 非线性声学(第二版)(北京: 科学出版社) 第238页]

    [26]

    Tanguay M, Colonius T 2003 5th International Symposium on Cavitation Osaka, Japan November 1-4, 2003

  • [1] 王云良, 颜学庆. 强激光与固体密度等离子体作用产生孤立阿秒脉冲的研究进展.  , 2023, 72(5): 054207. doi: 10.7498/aps.72.20222262
    [2] 冯博文, 王若愚, 马雨彭雪, 钟晓霞. 常压针-板放电等离子体密度演化.  , 2021, 70(9): 095201. doi: 10.7498/aps.70.20201790
    [3] 余鑫, 漆亮文, 赵崇霄, 任春生. 同轴枪正、负脉冲放电等离子体特性的对比.  , 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [4] 清河美, 那仁满都拉. 空化多泡中大气泡对小气泡空化效应的影响.  , 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [5] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生. 放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响.  , 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [6] 刘小龙, 黄建国, 雷开卓. 水下等离子体声源的冲击波负压特性.  , 2013, 62(20): 204301. doi: 10.7498/aps.62.204301
    [7] 栾仕霞, 张秋菊, 武慧春, 盛政明. 激光脉冲在等离子体中的压缩分裂.  , 2008, 57(6): 3646-3652. doi: 10.7498/aps.57.3646
    [8] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响.  , 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [9] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束烧蚀等离子体向背景气体中喷发的数值研究.  , 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [10] 李百文, 田恩科. 强激光与等离子体相互作用中受激陷俘电子声波散射及相空间离子涡旋的形成.  , 2007, 56(8): 4749-4761. doi: 10.7498/aps.56.4749
    [11] 刘海军, 安宇. 空化单气泡外围压强分布.  , 2004, 53(5): 1406-1412. doi: 10.7498/aps.53.1406
    [12] 陈 钢, 潘佰良, 姚志欣. 气体脉冲放电等离子体阻抗的参量研究.  , 2003, 52(7): 1635-1639. doi: 10.7498/aps.52.1635
    [13] 唐 华, 郭 弘, 刘明伟, 仇云利, 邓冬梅. 超短强激光脉冲在等离子体隧道中传输的理论与数值模拟研究.  , 2003, 52(9): 2170-2175. doi: 10.7498/aps.52.2170
    [14] 张家泰, 刘松芬, 胡北来. 强激光部分离化等离子体成丝不稳定性.  , 2003, 52(7): 1668-1671. doi: 10.7498/aps.52.1668
    [15] 卢新培, 潘垣, 张寒虹. 水中脉冲放电等离子体通道特性及气泡破裂过程.  , 2002, 51(8): 1768-1772. doi: 10.7498/aps.51.1768
    [16] 曾贵华, 徐至展. 等离子体中强场的演化.  , 1998, 47(7): 1123-1129. doi: 10.7498/aps.47.1123
    [17] 郭奇志, 沈文达, 朱莳通. 强激光等离子体中光子的运动.  , 1995, 44(3): 396-400. doi: 10.7498/aps.44.396
    [18] 盛政明, 徐至展, 马锦秀, 余玮. 圆偏振强激光场下等离子体动力学方程及输运.  , 1994, 43(1): 37-46. doi: 10.7498/aps.43.37
    [19] 朱莳通, 沈文达. 强激光等离子体的光学度规描述.  , 1993, 42(9): 1438-1442. doi: 10.7498/aps.42.1438
    [20] 贺贤土. 高频波激发低频磁场和离子声波的重整化强湍动理论.  , 1986, 35(3): 283-299. doi: 10.7498/aps.35.283
计量
  • 文章访问数:  7884
  • PDF下载量:  765
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-27
  • 修回日期:  2012-06-19
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map